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Abstract. Studying of factor complexity, palindromic complexity, and return words of in�nite
aperiodic words is an interesting combinatorial problem. Moreover, investigation of in�nite words
associated with β-integers Zβ , for β being a Pisot number, can be interpreted as investigation
of one-dimensional quasicrystals. In this paper, new results concerning the above combinatorial
characteristics for quadratic non-simple Parry number β will be presented. This is the only
case among (non-simple) Parry numbers worth of studying palindromes since for non-quadratic
cases, there is only a �nite number of palindromes in the associated in�nite word uβ . We have
investigated factor and palindromic complexity, return words, and arithmetics using methods
which can be applied for any in�nite aperiodic words being �xed points of a substitution.
Abstrakt. Studium komplexity, palindromické komplexity a �return� slov v nekone£ných aperi-
odických slovech je zajímavý kombinatorický problém. Zkoumání nekone£ných slov p°idruºených
β-celým £ísl·m lze navíc interpretovat jako zkoumání jednodimenzionálních kvazikrystal·. V tomto
£lánku p°edstavíme nové výsledky týkající se vý²e zmi¬ovaných charakteristik a také aritmetiky.
Námi zkoumaný p°ípad je jediným p°ípadem mezi parryovskými £ísly, kdy p°idruºené nekone£né
slovo obsahuje nekone£n¥ mnoho palindrom· a je tedy zajímavé z hlediska vy²et°ování palin-
dromické komplexity. Pouºité metody se dají aplikovat na celou °adu slov, která jsou pevnými
body substitucí.

1 Introduction
Some kinds of in�nite aperiodic words can serve as models for one dimensional quasicrys-
tals, i.e., materials with long-range orientational order and sharp di�raction images of
non-crystallographic symmetry. We will focus on in�nite words uβ associated with β-
integers Zβ ⊂ R. It has been shown that for β being a Pisot number (β > 1 being an
algebraic integer such that all its Galois conjugates have modulus strictly less than one),
Zβ is a uniformly discrete and relatively dense set (in one word, it is a Delone set [9])
ful�lling Zβ −Zβ ⊂ Zβ + F for a �nite set F (the Meyer property [10]). Since self-similar
Delone sets ful�lling the Meyer property are suitable models for quasicrystalline structure,
β-integers for β being a Pisot number serve as models for one dimensional quasicrystals.

2 Preliminaries
First, let us introduce our �language� which will be used throughout this paper. An
alphabet A is a �nite set of symbols called letters. A concatenation of letters is a word.
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The set A∗ of all �nite words (including the empty word ε) provided with the operation
of concatenation is a free monoid. We will deal also with right-sided in�nite words u =
u0u1u2.... A �nite word w is called a factor of the word u (�nite or in�nite) if there exist
a �nite word w(1) and a word w(2) (�nite or in�nite) such that u = w(1)ww(2). The word w
is a pre�x of u if w(1) = ε. A concatenation of k letters a (or words a) will be denoted by
ak, a concatenation of in�nitely many letters a (or words a) by aω. An in�nite word u is
said to be eventually periodic if there exist words v, w such that u = vwω. A word which
is not eventually periodic is called aperiodic. An in�nite word u is uniformly recurrent if
for any n ∈ N there exists an R(n) ∈ N such that any factor of u of length R(n) contains
all factors of length n. The language on u is the set of all factors of a word u. A mapping
ϕ on the free monoid A∗ is called a morphism if ϕ(vw) = ϕ(v)ϕ(w) for all v, w ∈ A∗.
Obviously, for determining any morphism it su�ces to give ϕ(a) for all a ∈ A. The action
of a morphism can be naturally extended on right-sided in�nite words by the prescription

ϕ(u0u1u2...) := ϕ(u0)ϕ(u1)ϕ(u2)...

A non-erasing morphism ϕ, for which there exists a letter a ∈ A such that ϕ(a) = aw
for some non-empty word w ∈ A∗, is called a substitution. An in�nite word u such that
ϕ(u) = u is called a �xed point of the substitution ϕ. Obviously, every substitution has
at least one �xed point, namely

lim
n→∞

ϕn(a).

A substitution ϕ is primitive if there exists an integer exponent k such that for each
pair of letters a, b ∈ A, the letter a appears in the word ϕk(b). Que�élec [12] showed that
any �xed point of a primitive substitution is a uniformly recurrent in�nite word.

3 Beta-expansions and beta-integers
Let β > 1 be a real number and let x be a positive real number. Any convergent series
of the form:

x =
k∑

i=−∞
xiβ

i,

where xi ∈ N, is called a β-representation of x. As well as it is usual for the decimal
system, we will denote the β-representation of x by

xkxk−1... x0 • x−1... ,

if k ≥ 0, otherwise
0 • 0.............0︸ ︷︷ ︸

(−1−k)−times

xkxk−1... .

If a β-representation ends with in�nitely many zeros, it is said to be �nite and the
ending zeros are omitted. A representation of x can be obtained by the following greedy
algorithm: There exists k ∈ Z such that βk ≤ x < βk+1. Let xk := b x

βk c and rk := { x
βk },

where b.c denotes the lower integer part and {.} denotes the fractional part. For i < k, put
xi := bβri+1c and ri := {βri+1}. The representation obtained by the greedy algorithm
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is called β-expansion of x and denoted 〈x〉β. If x =
∑k

i=−∞ xiβ
i is the β-expansion of

a nonnegative number x, then
∑−1

i=−∞ xiβ
i is called the β-fractional (or simply fractional)

part of x. Let us introduce some important notions connected with β-expansions:

• The set of nonnegative numbers with vanishing fractional part are called nonnega-
tive β-integers, formally

Z+
β := {x ≥ 0

∣∣ 〈x〉β = xkxk−1... x0•}.

• The set of β-integers is then de�ned by

Zβ := −Z+
β ∪ Z+

β .

• All the real numbers with a �nite β-expansion of |x| form the set Fin(β), formally

Fin(β) :=
⋃

n∈N

1

βn
Zβ.

• For any x ∈ Fin(β), we denote by fpβ(x) the length of its fractional part, i.e.,

fpβ(x) = min{l ∈ N
∣∣ βlx ∈ Zβ}.

The sets Zβ and Fin(β) are generally not closed under addition and multiplication.
The following notion is important for studying of lengths of the fractional parts which
may appear as a result of addition and multiplication.

• L⊕(β) := min{L ∈ N
∣∣ x, y ∈ Zβ, x + y ∈ Fin(β) =⇒ fpβ(x + y) ≤ L}.

• L⊗(β) := min{L ∈ N ∣∣ x, y ∈ Zβ, xy ∈ Fin(β) =⇒ fpβ(xy) ≤ L}.

If such L ∈ N does not exist, we set L⊕(β) := ∞ or L⊗(β) := ∞.
The Rényi expansion of unity simpli�es the description of elements of Zβ and Fin(β).

For its de�nition, we introduce the transformation Tβ(x) := {βx} for x ∈ [0, 1]. The
Rényi expansion of unity in the base β is de�ned as

dβ(1) = t1t2t3..., where ti := bβT i−1
β (1)c.

One can show that every real number β can be characterized by its Rényi expansion
of unity (see [11]). Numbers with a �nite Rényi expansion of unity are called simple
Parry numbers. Numbers with an eventually periodic Rényi expansion of unity are called
(non-simple) Parry numbers.
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4 In�nite words associated with beta-integers
In [14], it is shown that the distances occurring between neighbors of Zβ form the set
{∆k

∣∣ k ∈ N}, where
∆k :=

∞∑
i=1

ti+k

βi
for k ∈ N. (1)

It is evident that the set {∆k

∣∣ k ∈ N} is �nite if and only if dβ(1) is eventually periodic.
Every Pisot number, i.e., a real algebraic integer greater than 1, all of whose conjugates

are of modulus strictly less than 1, is a Parry number. On the other hand, every quadratic
Parry number is Pisot. This explains that if we deal with quadratic Parry numbers β,
the set Zβ models one-dimensional quasicrystals.

From now on, we will restrict our considerations to quadratic Parry numbers. The
Rényi expansion of unity for a simple quadratic Parry number β is equal to dβ(1) = pq,
where p ≥ q, in other words, β is the positive root of the polynomial x2 − px − q.
Whereas the Rényi expansion of unity for a non-simple quadratic Parry number β is
equal to dβ(1) = pqω, where p > q ≥ 1, and β is the greater root of the polynomial
x2 − (p + 1)x + p − q. Drawn on the real line, there are only two distances between
neighboring points of Zβ. The longer distance is always ∆0 = 1, the smaller one is ∆1.

If we assign letters 0, 1B to the two types of distances ∆0 and ∆1, respectively, and
write down the order of distances in Z+

β on the real line, we naturally obtain an in�nite
word; we will denote this word by uβ. Since βZ+

β ⊂ Z+
β , it can be shown easily that the

word uβ is a �xed point of a certain substitution ϕ (see e.g. [6]); in particular, for the
non-simple quadratic Pisot number β, the generating substitution is

ϕ(0) = 0p1, ϕ(1) = 0q1. (2)

5 Combinatorial and arithmetical properties of in�nite
words

To understand the physical properties of quasicrystals, it is useful to investigate the
combinatorial and arithmetical properties of the in�nite aperiodic words uβ modeling
quasicrystals.

• The number of local con�gurations of atoms in quasicrystalline materials is de-
scribed by factor complexity. It is a function associating to every integer n the
number of di�erent factors of length n contained in uβ.

• The local symmetry of the material corresponds to palindromic complexity. It is
a function associating to every integer n the number of di�erent palindromes of
length n contained in uβ, where palindrome is a word which stays the same when
read backwards.

• Another interesting characterization of richness of motives appearing in quasicrys-
tals is given by the notion of return words. Let w be a factor of uβ. Take an arbitrary
occurrence of w in uβ. You obtain a return word of w if you read letters successively,
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beginning at the �rst letter of w and ending with the letter preceding the very next
occurrence of w.

There is one more important reason why to deal with β-integers. It is sometimes
useful in computer science to consider addition or multiplication in β-arithmetics. Zβ

is generally not closed under addition and multiplication, thus it is useful to study the
fractional parts that may appear as results of these operations and to estimate their
lengths, i.e., to �nd the values of L⊕(β) and L⊗(β).

6 Summary of known results
Let us remind that all the characteristics we consider here, i.e., factor complexity, palin-
dromic complexity, return words, and arithmetics, have been already investigated for
quadratic Parry units.

• Factor complexity of the in�nite word uβ associated with β being a quadratic Parry
unit is equal to n + 1 [4], i.e., uβ in this case is a Sturmian word. Let us mention
that all the eventually periodic words have complexity less or equal to n for some
n, hence Sturmian words are the simplest aperiodic words.

• It has been shown in [5] that there are exactly 2 palindromes of any odd length
and one palindrome of any even length, hence palindromic complexity P reaches
the following values

P (2n) = P (0) = 1 and P (2n + 1) = P (1) = 2 for all n ∈ N. (3)

• According to [15] it holds that an in�nite word on a binary alphabet is Sturmian if
and only if for any factor w, there exist two return words of w.

• Results for arithmetics of quadratic Parry units have been found in [4]. For the case
of β having the Rényi expansion of unity dβ(1) = p1, the exact values of L⊕(β) and
L⊗(β) are L⊕(β) = L⊗(β) = 2, while for β having the Rényi expansion of unity
dβ(1) = p(p− 1)ω, it holds L⊕(β) = L⊗(β) = 1.

A lot of work has been done also for simple Parry numbers. The exact formula for
factor complexity of uβ for β being a simple Parry number with the Rényi expansion
of unity dβ(1) = t1t2...tm, where t1 = t2 = ... = tm−1 or t1 > max{t2, ..., tm−1} has
been derived in [7]. It is useful to consider palindromic complexity only for the case of
t1 = t2 = ... = tm−1. Otherwise, the language of uβ is not closed under reversal and,
hence, contains only a �nite number of palindromes. The exact formula for palindromic
complexity of uβ associated with a simple Parry number with the Rényi expansion of
unity dβ(1) = t1t2...tm, where t1 = t2 = ... = tm−1, has been found in [1].

In [8], one can �nd very precise estimates on L⊕(β) for β being a quadratic simple
Parry number and also some rough estimates on L⊕(β) for β being a non-simple quadratic
Parry number.
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7 New results
We will present our results concerning all the characteristics of the in�nite word uβ

associated with beta-integers for β being a quadratic non-simple non-unit Parry number,
i.e., β having the Rényi expansion of unity dβ(1) = pqω, where p − 1 > q ≥ 1, in other
words, β being the larger root of the polynomial x2 − (p + 1)x + (p − q). In this case,
uβ is the �xed point of the substitution ϕ(0) = 0p1, ϕ(1) = 0q1. We have investigated
factor and palindromic complexity [2], return words, and arithmetics [3]. We have found
the exact values of factor complexity C, which implies that C(n + 1)−C(n) ∈ {1, 2} for
all n ∈ N. We have derived the exact values of palindromic complexity P , which con�rms
that P (n) ∈ {1, 2, 3, 4} for all n ∈ N. We have shown that for any factor w of uβ, there
exist either 2 or 3 return words of w. In the arithmetics, the upper bound on the number
L⊕(β) reached in [8] has been improved. We have shown that

⌊
p−1

q

⌋
≤ L⊕(β) ≤

⌈
p
q

⌉
.

Let us describe in more details factor complexity of uβ and the cardinality of the set of
return words of uβ.

7.1 Factor complexity
For proofs and precise statements of this section see [2]. To describe complexity of in�nite
uniformly recurrent words, one can limit his considerations to description of left special
factors. Let us remind that a factor w of uβ is left special if both 0w and 1w are factors
of uβ.

Observation 7.1. Let us denote by Mn the set of all left special factors of length n of
an in�nite uniformly recurrent word over a two-letter alphabet. Then the �rst di�erence
of complexity satis�es

∆C(n) = C(n + 1)− C(n) = #Mn.

To describe all the left special factors of uβ, let us distinguish more types of them.

De�nition 7.1. Let uβ be the in�nite word associated with dβ(1) = pqω, p− 1 > q ≥ 1.

• A left special factor w ∈ L(uβ) is called maximal if neither w0 nor w1 are left
special.

• An in�nite word v is called an in�nite left special factor of uβ if each pre�x of v is
a left special factor of uβ.

• A factor w of uβ is called total bispecial if both w0 and w1 are left special factors
of uβ.

Example 7.1. Let us illustrate a few of left special factors of uβ = 0001000100010100010001000101 . . .
being the �xed point of the substitution ϕ(0) = 0001, ϕ(1) = 01 by construction of the head
of a tree containing left special factors. Beginning from the empty word to the right, one
can read all left special factors of length n ∈ {1, 2, ..., 14}. There are two maximal left
special factors 00, 01000100010 and two total bispecial factors 0, 0100010 having length
< 14.
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0

1
ε 0

1

0

0 0 0 1 0
0 0 1 0

1 0 0 0 1 0 0 ...

Obviously, every left special factor is a pre�x of a maximal or an in�nite left special
factor. Let us describe all the maximal and in�nite left special factors:

• All maximal left special factors have the form:

U (1) = 0p−1, (4)

U (n) = T (U (n−1)) = 0q1ϕ(U (n−1))0q for n ≥ 2.

• All total bispecial factors have the form:

V (1) = 0q, (5)

V (n) = T (V (n−1)) = 0q1ϕ(V (n−1))0q.

Moreover, V (n−1) is a pre�x of V (n) and V (n) is a pre�x of U (n) for all n ∈ N.
• There exists one in�nite left special factor of the form limn→∞ V (n).

For n such that
|V (k)| < n ≤ |U (k)| for some k ∈ N,

there exist two left special factors of length n. The lengths |V (k)|, |U (k)| play an essen-
tial role for determining of complexity. One can easily obtain the recursive formulae of
|V (k)|, |U (k)| using their de�nition (4) and (5).

Combining all the obtained results, we can determine complexity.

Theorem 7.1. Let uβ be the �xed point of the substitution ϕ(0) = 0p1, ϕ(1) = 0q1, p−
1 > q ≥ 1. Then for all n ∈ N

4C(n) = C(n + 1)− C(n) =

{
2 |V (k)| < n ≤ |U (k)| for some k ∈ N,
1 otherwise.

0

1
ε 0

1

0

0 0 0 1 0
0 0 1 0

1 0 0 0 1 0 0 ...V(1)=0

V(2) = 0100010

U(1) = 00 U(2)= 01000100010

Obrázek 1: Illustration of the tree of left special factors for uβ being the �xed point of the
substitution ϕ(0) = 0001, ϕ(1) = 01. We can see total bispecial factors V (k) and maximal
left special factors U (k) for k = 1, 2.
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7.2 Return words
Let us start with an exact de�nition of a return word. Let w be a factor of an in�nite word
u = u0u1 . . . (with uj ∈ A), the length |w| = `. An integer j is an occurrence of w in u if
ujuj+1 . . . uj+`−1 = w. Let j, k, j < k, be successive occurrences of w. Then ujuj+1 . . . uk−1

is a return word of w. The set of all return words of w is denoted by M(w), i.e.,

M(w) = {ujuj+1 . . . uk−1 | j, k being successive occurrences of w}.

It is not di�cult to see that the set of return words of w is �nite for any factor w if u is
a uniformly recurrent word. In our case, uβ is a �xed point of a primitive substitution,
consequently, uβ is uniformly recurrent.

Example 7.2. Let uβ = 001001010010010100101.... be the �xed point of the substitution
ϕ(0) = 001, ϕ(1) = 01. Let us show examples of return words:

M(0) = {0, 01},

M(00) = {001, 00101},
M(001) = {001, 00101},
M(0010) = {001, 00101}.

In order to study return words M(w) of factors w of an in�nite word u, it is possible
to limit our considerations to bispecial factors. Namely, if a factor w is not right special,
i.e., if it has a unique right extension a ∈ A, then the sets of occurrences of w and wa
coincide, and

M(w) = M(wa).

If a factor w has a unique left extension b ∈ A, then j ≥ 1 is an occurrence of w in
the in�nite word u if and only if j − 1 is an occurrence of bw. This statement does not
hold for j = 0. Nevertheless, if u is a uniformly recurrent in�nite word, then the set
M(w) of return words of w stays the same no matter whether we include the return word
corresponding to the pre�x w of u or not. Consequently, we have

M(bw) = bM(w)b−1 = {bvb−1 | v ∈ M(w)},

where bvb−1 means that the word v is prolonged to the left by the letter b and it is
shortened from the right by erasing the letter b (which is always the su�x of v for
v ∈ M(w)).

For an aperiodic uniformly recurrent in�nite word u, each factor w can be extended
to the left and to the right to a bispecial factor. To describe the cardinality of M(w), it
su�ces therefore to consider bispecial factors w.

Observation 7.2. Let w be a bispecial factor of uβ containing at least one 1. Then there
exists a bispecial factor v such that w = ϕ(v)0q and #M(w) = #M(v).

Using Observation 7.2, it su�ces to consider bispecial factors of uβ that do not contain
1 to obtain all possible cardinalities of the sets of return words.
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Theorem 7.2. Let w be a factor of uβ. Then 2 ≤ #M(w) ≤ 3.

D·kaz. Let us describe return words of bispecial factors that do not contain 1, i.e., that
are equal to 0r, r ≤ p− 1.

1. Let r ≤ q. Then all the return words of 0r are the following ones:

0 since there is the block 0p ∈ L(uβ),

0r1 since there occurs the block 0p10p ∈ L(uβ).

2. Let q < r ≤ p− 1. Then all the return words are the following ones:

0 since there is the block 0p ∈ L(uβ),

0r1 since there occurs the block 0p10p ∈ L(uβ),

0r10q1 since there is the block 0p10q10p ∈ L(uβ).

It is apparent that there are no other return words of 0r.

Observation 7.3. From the proof of Theorem 7.2, we can notice that in the case q = p−1,
#M(w) = 2 for all the pre�xes of uβ. This con�rms that uβ is Sturmian in this case.
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