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Abstract. An infinite word has the property Rm if every factor

has exactly m return words. Vuillon showed that R2 characterizes

Sturmian words. We prove that a word satisfies Rm if its complexity

function is (m − 1)n + 1 and if it contains no weak bispecial fac-

tor. These conditions are necessary for m = 3, whereas for m = 4

the complexity function need not be 3n + 1. A new class of words

satisfying Rm is given.

1. Introduction

Recently, return words have been intensively studied in (symbolic)

dynamical systems, combinatorics on words and number theory. Roughly

speaking, for a given factor w of an infinite word u, a return word of w is

a word between two successive occurrences of the factor w. This can be

seen as a symbolic version of the first return map in a dynamical system.

This notion was introduced by Durand [5] to give a nice characterization

of primitive substitutive sequences. A slightly different notion of return

words was used by Ferenczi, Mauduit and Nogueira [9].
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Sturmian words are aperiodic words over a biliteral alphabet with the

lowest possible factor complexity; they were defined by Morse and Hed-

lund [12]. Using return words, Vuillon [14] found a new equivalent defini-

tion of Sturmian words. He showed that an infinite word u over a biliteral

alphabet is Sturmian if and only if any factor of u has exactly two return

words. A short proof of this fact is given in Section 5.

A natural generalization of Sturmian words to m-letter alphabets is

constituted by infinite words with every factor having exactly m return

words. This property is called Rm. It covers other generalizations of Stur-

mian words: Justin and Vuillon [11] proved that Arnoux-Rauzy words of

order m satisfy Rm, Vuillon [15] proved this property for words coding

regular m-interval exchange transformations.

The factor complexity, i.e., the number of different factors of length n,

of the two classes of words with property Rm in the preceding paragraph

is (m − 1)n + 1 for all n ≥ 0. Vuillon [15] observed that this condition

is not sufficient to describe words satisfying Rm, m ≥ 3: the fixed point

of a certain recoding of the Chacon substitution, which has complexity

2n + 1 by Ferenczi [7], has factors with more than 3 return words.

A deeper inspection of the two classes of words with property Rm shows

that not only the first difference of complexity is constant, but also that

the bilateral order of every factor (see Cassaigne [4] and Section 4) is zero.

We show that this condition is indeed sufficient to have the property Rm,

and provide a less known class of words satisfying this condition. If a

word satisfies R3, then we can show that no factor is weak bispecial, i.e.,

no factor has negative bilateral order. Therefore the words with R3 are

characterized by complexity 2n + 1 and the absence of weak bispecial

factors.
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In Section 6.1, we provide a word satisfying R4 with an even number

of factors of every positive length (containing infinitely many weak bis-

pecial factors). Therefore words satisfying Rm do not necessarily have

complexity (m− 1)n + 1, and it is an open question whether there exists

a nice characterization of words satisfying Rm for m ≥ 4.

In this article we focus only on the number of return words correspond-

ing to a given factor of an infinite word. We do not study the ordering

of return words in the infinite word, i.e., we do not study derivated se-

quences (see [5] for the precise definition). Let us just mention here that

a derivated sequence of a word with property Rm is again a word satis-

fying Rm. A description of derivated sequences of Sturmian words can

be found in [1].

2. Basic definitions

An alphabet A is a finite set of symbols called letters. A (possibly

empty) concatenation of letters is a word. The set A∗ of all finite words

provided with the operation of concatenation is a free monoid. The

length of a word w is denoted by |w|. A finite word w is called a factor

(or subword) of the (finite or right infinite) word u if there exist a finite

word v and a word v′ such that u = vwv′. The word w is a prefix of u if v

is the empty word. Analogously, w is a suffix of u if v′ is the empty word.

We say that a prefix (suffix) w of u is proper if w 6= u. A concatenation

of k words w will be denoted by wk.

The language L(u) is the set of all factors of the word u, and Ln(u) is

the set of all factors of u of length n. Let w be a factor of an infinite word

u and let a, b ∈ A. If aw is a factor of u, then we call a a left extension

of w. Analogously, we call b a right extension of w if wb ∈ L(u). We will
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denote by E`(w) the set of all left extensions of w, and by Er(w) the set

of right extensions. A factor w is left special if #E`(w) ≥ 2, right special

if #Er(w) ≥ 2 and bispecial if w is both left special and right special.

Let w be a factor of an infinite word u = u0u1 · · · (with uj ∈ A), |w| =
`. An integer j is called an occurrence of w in u if ujuj+1 · · · uj+`−1 = w.

Let j, k, j < k, be successive occurrences of w. Then ujuj+1 · · · uk−1 is

a return word of w. The set of all return words of w is denoted by R(w),

R(w) = {ujuj+1 . . . uk−1 | j, k being successive occurrences of w in u}.

If v is a return word of w, then vw is called complete return word.

An infinite word is recurrent if any of its factors occurs infinitely often

or, equivalently, if any of its factors occurs at least twice. It is uniformly

recurrent if, for any n ∈ N, every sufficiently long factor contains all

factors of length n. It is not difficult to see that a recurrent word on

a finite alphabet is uniformly recurrent if and only if the set of return

words of any factor is finite.

The variability of local configurations in u is expressed by the factor

complexity function (or simply complexity) C(n) = #Ln(u). It is well

known that a word u is aperiodic if and only if C(n) ≥ n + 1 for all

n ∈ N (see [12]). Infinite aperiodic words with the minimal complexity

C(n) = n + 1 for all n ∈ N are called Sturmian words. These words have

been studied extensively, and several equivalent definitions of Sturmian

words can be found in Berstel [3].

3. Simple facts for return words

3.1. Restriction to bispecial factors. If a factor w is not right special,

i.e., if it has a unique right extension b ∈ A, then the sets of occurrences
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of w and wb coincide, and

R(w) = R(wb).

If a factor w has a unique left extension a ∈ A, then j ≥ 1 is an occurrence

of w in the infinite word u if and only if j − 1 is an occurrence of bw.

This statement does not hold for j = 0. Nevertheless, if u is a recurrent

infinite word, then the set of return words of w stays the same no matter

whether we include the return word corresponding to the prefix w of u

or not. Consequently, we have

R(aw) = aR(w)a−1 = {ava−1 | v ∈ R(w)},

where ava−1 means that the word v is prolonged to the left by the letter

a and it is shortened from the right by erasing the letter a (which is

always a suffix of v for v ∈ R(w)).

For an aperiodic uniformly recurrent infinite word u, each factor w

can be extended to the left and to the right to a bispecial factor. To

describe the cardinality and the structure of R(w) for arbitrary w, it

suffices therefore to consider bispecial factors w.

3.2. Tree of return words. It is convenient to consider a tree con-

structed in the following way: Label the root with a factor w, and attach

#Er(w) children, with labels wb, b ∈ Er(w). Repeat this recursively with

every node labeled by v, except if w is a suffix of v. If u is uniformly

recurrent, then this algorithm stops, and it is easy to see that the labels

of the leaves of this tree are exactly the complete return words of w.

Therefore we have

(1) #R(w) = #{leaves} = 1 +
∑

non-leaves v

(#Er(v)− 1).
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In particular, if w is the unique right special factor of its length, then

#R(w) = #Er(w).

Figure 1. Tree of return words of 01 in the Thue-Morse

sequence, and a more compact representation by a trie.

A similar construction can be done with left extensions, yielding similar

formulae. Since we can restrict our attention to bispecial factors w by

Section 3.1, we obtain the following proposition.

Proposition 3.1. Let u be a recurrent word and m ∈ N. Suppose that

for every n ∈ N at least one of the following conditions is satisfied:

• There is a unique left special factor w ∈ Ln(u), and #E`(w) = m.

• There is a unique right special factor w∈Ln(u), and #Er(w) = m.

Then u satisfies Rm, i.e., every factor has exactly m return words.

Recall that Arnoux-Rauzy words of order m are defined as uniformly

recurrent infinite words which have for every n ∈ N exactly one right

special factor w of length n with #Er(w) = m and exactly one left special

factor w of length n with #E`(w) = m. They are also called strict

episturmian words. It is easy to see that Sturmian words are recurrent,

and we obtain the following corollary to Proposition 3.1.

Corollary 3.2. Arnoux-Rauzy words of order m satisfy Rm, in particular

Sturmian words satisfy R2.

4. Sufficient conditions for property Rm

This section is devoted to sufficient conditions for a word u having the

property Rm, but we mention first two evident necessary conditions.
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The alphabet A of u must have m letters since the occurrences of the

empty word are all integers n ≥ 0, and its return words are therefore

all letters un. Furthermore, u must be uniformly recurrent since every

factor has a return word and only finitely many of them.

An important role in our further considerations is played by weak

bispecial factors.

Definition 4.1. A factor w of a recurrent word is weak bispecial if

B(w) < 0, where

B(w) = #{awb ∈ L(u) | a, b ∈ A} −#E`(w)−#Er(w) + 1

is the bilateral order of w.

Since #{awb ∈ L(u) | a, b ∈ A} =
∑

a∈E`(w)

#Er(aw) =
∑

b∈Er(w)

#E`(wb), the

inequality B(w) < 0 is equivalent to

∑

a∈E`(w)

(#Er(aw)− 1) < #Er(w)− 1

and to

∑

b∈Er(w)

(#E`(wb)− 1) < #E`(w)− 1.

The bilateral order was defined by Cassaigne [4] in order to calculate

the second complexity difference. If we set ∆C(n) = C(n + 1) − C(n),

then we have

∆C(n) =
∑

w∈Ln(u)

(
#E`(w)− 1

)
=

∑

w∈Ln(u)

(
#Er(w)− 1

)
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and therefore

∆C(n + 1)−∆C(n) =
∑

w∈Ln(u)

∑

a∈E`(w)

(#Er(aw)− 1)−
∑

w∈Ln(u)

(#Er(w)− 1)

=
∑

w∈Ln(u)

(
#{awb ∈ L(u) | a, b ∈ A} −#E`(w)−#Er(w) + 1

)
=

∑

w∈Ln(u)

B(w).

If B(w) = 0 for all factors w, then the first complexity difference is

constant. If no factor is weak bispecial, then ∆C(n) is non-decreasing.

Since ∆C(0) = #A− 1 and #A = m, we obtain the following lemma.

Lemma 4.2. If u satisfies Rm and no factor is weak bispecial, then

∆C(n) ≥ m− 1 for all n ≥ 0.

The number of return words can be bounded by the following lemmas.

Lemma 4.3. If u is a uniformly recurrent word with no weak bispecial

factor, then

#R(w) ≥ 1 + ∆C(|w|)

for every factor w ∈ L(u).

Proof. Let w ∈ L(u) and denote by v1, v2, . . . , vr the right special fac-

tors of length |w|. Since no factor is weak bispecial and u is uniformly

recurrent, every vj can be extended to the left without decreasing the

total amount of “right branching” until w is reached. More precisely,

we have (mutually different) right special factors v
(1)
j , v

(2)
j , . . . , v

(sj)
j with

suffix vj, prefix w and no other occurrence of w such that #Er(vj)− 1 ≤
∑sj

i=1(#Er(v
(i)
j )− 1). Since all v

(i)
j are nodes in the tree of return words

and v
(i)
j 6= v

(i′)
j′ if (j, i) 6= (j′, i′), we can use (1) and obtain

#R(w) ≥ 1+
r∑

j=1

sj∑
i=1

(#Er(v
(i)
j )−1) ≥ 1+

r∑
j=1

(#Er(vj)−1) = 1+∆C(|w|).
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Lemma 4.4. If u has no weak bispecial factor and ∆C(n) < m for all

n ≥ 0, then

#R(w) ≤ m

for every factor w ∈ L(u).

Proof. Let v1, v2, . . . , vr denote the right special factors which are labels

of non-leave nodes in the tree of return words of w, and n = max1≤j≤r |vj|.
Since no bispecial factor is weak, every vj can be extended to the left to

factors of length n without decreasing the total amount of “right branch-

ing”. More precisely, we have (mutually different) right special factors

v
(1)
j , v

(2)
j , . . . , v

(sj)
j of length n with suffix vj such that #Er(vj) − 1 ≤

∑sj

i=1(#Er(v
(i)
j )− 1). Since w occurs in vj only as prefix, no vj can be a

proper suffix of vj′ . Hence we have v
(i)
j 6= v

(i′)
j′ if (j, i) 6= (j′, i′) and

#R(w) = 1 +
r∑

j=1

(
#Er(vj)− 1

) ≤ 1 +
r∑

j=1

sj∑
i=1

(
#Er(v

(i)
j )− 1

)

≤ 1 + ∆C(n) ≤ m. ¤

For words with no weak bispecial factors, these three lemmas give a

very simple characterization of the property Rm.

Theorem 4.5. If u is a uniformly recurrent word with no weak bispecial

factor, then it satisfies Rm if and only if C(n) = (m − 1)n + 1 for all

n ≥ 0.

5. Properties R2 and R3

For m = 2 and m = 3, we can completely characterize the words with

property Rm.
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Definition 5.1. Let v be a return word of w ∈ L(u). We say that the

return word v starts with b if wb is a prefix of the complete return word

vw and that it ends with a if aw is a suffix of vw.

A right special factor w is called maximal right special if w is not a

proper suffix of any right special factor, i.e.,
∑

a∈E`(w)(#Er(aw)− 1) = 0.

Any maximal right special factor is therefore weak bispecial.

Lemma 5.2. If w ∈ L(u) is a maximal right special factor such that for

any b ∈ Er(w) there exists a unique v ∈ R(w) starting with b, then u is

eventually periodic.

Proof. Denote the return words of w by v1, v2, . . . , vr, where, w.l.o.g., vj

starts with bj, ends with aj and bj+1 is the only letter in Er(ajw) for

1 ≤ j < r. Then b1 is the only letter in Er(arw) and u = p(v1v2 · · · vr)
∞

for some prefix p. ¤

Corollary 5.3. If u satisfies R2, then it has no maximal right special

factor.

Proof. Assume that w is a maximal right special factor. Then the two

return words of w have different starting letters, hence u is eventually

periodic by Lemma 5.2 and #R(wa) = 1. ¤

On a binary alphabet, the notions “weak bispecial” and “maximal

right special” coincide. Therefore Corollaries 3.2, 5.3 and Lemma 4.3

provide a short proof of the following theorem.

Theorem 5.4 (Vuillon [14]). An infinite word u satisfies R2 if and only

if it is Sturmian.

For words with property R3, we need the following lemma.
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Lemma 5.5. Let w be a weak bispecial factor with a unique a ∈ E`(w)

such that more than one return word of w starts with a letter in Er(aw),

then #R(aw) < #R(w).

Proof. Any return word of aw is of the form av1v2 · · · vra
−1 for some

r ≥ 1 and vj ∈ R(w), 1 ≤ j ≤ r. If v1 ends with a, then r = 1. If

v1 ends with a′ 6= a, then the assumption of the lemma implies that

there is a unique return word of w starting with a letter in Er(a
′w) (and

#Er(a
′w) = 1). Therefore v2 and inductively the sequence of words

v2, . . . , vr are completely determined by the choice of v1. This implies

that #R(aw) equals the number of return words of w starting with a

letter in #Er(aw). Since w is weak bispecial, we have #Er(aw) < #Er(w)

and thus #R(aw) < #R(w). ¤

Remark. There are two cases for Lemma 5.5: Either aw is right special

or there is more than one return word of w starting with the unique right

extension of aw.

Corollary 5.6. If u satisfies R3, then it has no weak bispecial factor.

Proof. Assume that w is a weak bispecial factor. Since u is uniformly re-

current the problem is symmetric, and we may assume, w.l.o.g., #E`(w) ≤
#Er(w).

If #Er(w) = 3, then every return word of w starts with a different

letter in Er(w). Since at most for one a ∈ E`(w), the factor aw is right

special, we obtain a contradiction to R3 by Lemma 5.2 or 5.5.

If #Er(w) = 2, then Er(aw) = {b} and Er(a
′w) = {b′}. Since, w.l.o.g.,

two return words of w start with b and one starts with b′, we obtain a

contradiction to R3 by Lemma 5.5. ¤
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By combining Corollary 5.6 and Theorem 4.5, we obtain the following

theorem.

Theorem 5.7. A uniformly recurrent word u satisfies R3 if and only if

C(n) = 2n + 1 for all n ≥ 0 and u has no weak bispecial factor.

Remarks.

• The theorem remains true if “weak bispecial” is replaced by “max-

imal right special”: If ∆C(n) = 2 for all n ≥ 0, then every factor

w with #Er(w) = 3 is the unique right special factor of its length,

and it cannot be weak bispecial. If #Er(w) = 2, then the two

notions coincide.

• By symmetry, “weak bispecial” can be replaced by “maximal left

special”.

• The condition on weak bispecial factors cannot be omitted. Fer-

enczi [7] showed that the fixed point σ∞(1) of the substitution

given by σ : 1 7→ 12, 2 7→ 312, 3 7→ 3312, a recoding of the

Chacon substitution, has complexity 2n + 1 and it contains weak

bispecial factors.

6. Property R4

6.1. A word with complexity 6= 3n + 1. The following proposition

shows that C(n) need not be (m− 1)n + 1 for all n ≥ 0 if u satisfies Rm.

Proposition 6.1. Define the substitution σ by

σ : 1 7→ 13231 4 7→ 42324

2 7→ 13231424131 3 7→ 42324131424

Then the fixed point σ∞(1) satisfies R4.
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Proof. By Section 3.1, it is sufficient to consider bispecial factors of u =

σ∞(1). The factors of length 2 are L2(u) = {13, 14, 23, 24, 31, 32, 41, 42}.
For the bispecial factors 1, 2, 23, 2413, the return words can be determined

easily:

R(1) = {13, 1323, 1424, 142324}

R(2) = {23, 2314, 2413, 241314}

R(23) = {2314, 2314241314, 232413, 232413142413}

R(2413) = {241314, 24131423, 24132314, 2413231423}

The language of u is closed under the morphism ϕ defined by ϕ : 1 ↔ 4,

2 ↔ 3, since σϕ(w) = ϕσ(w) for all factors w. Therefore we have

R(ϕ(w)) = ϕ(R(w)).

The only factors of the form a1b, a, b ∈ A are 314 and 413, hence 1 is

a weak bispecial factor, and 1, 4 are the only bispecial factors with prefix

or suffix 1 or 4. Similarly, 23 and 32 are weak bispecial factors and no

other bispecial factor has prefix or suffix 23 or 32.

The return words of the weak bispecial factor 2413142 are factors of

σ(v), with a factor v of length |v| ≥ 2 having prefix 2 or 3, suffix 2 or 3

and no other occurrence of 2 and 3. Since the only possibilites for v are

23, 2413, 32, 3142, we obtain

R(2413142) = {24131423, 241314232413231423,

24131424132314, 241314241323142324132314}.

All remaining bispecial factors w have prefix 24132 or 31423 and suffix

23142 or 32413, and therefore a decomposition w = t σ(v) t′ with t ∈
{24, 31}, t′ ∈ {1323142, 4232413} and a unique bispecial factor v. If v is
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empty, then we have w.l.o.g. w = 241323142 and

R(w) = {2413231423, 2413231423241314,

2413231424131423, 24132314241314232413242}.

If v is not empty, then the uniqueness of v implies that the set of complete

return words of w is t σ(R(v)v) t′. Since v is shorter than w, we obtain

inductively that all bispecial factors have exactly 4 return words. ¤

6.2. Weak bispecial factors. The preceding example shows that weak

bispecial factors cannot be excluded in words u satisfying R4. Neverthe-

less, we can show that the existence of a weak bispecial factor imposes

strong restrictions on the structure of the word u.

Lemma 6.2. Let w be a weak bispecial factor of a word u satisfying R4.

Then there exist factors w1, w2 ∈ Aw ∪ wA and v1, v2, v3, v4 such that

(2)

R(w1) = {v1v3, v1v4, v2v3, v2v4} and R(w2) = {v3v1, v3v2, v4v1, v4v2}.

Proof. Let w be a weak bispecial factor. In the proof, we will use sub-

stantially the relation

(3)
∑

a∈E`(w)

(#Er(aw)− 1) < #Er(w)− 1

and the consequence of Lemma 5.5 that there must be at least two letters

a ∈ E`(w) such that at least two return words of w start with a letter in

Er(aw).

Note that the property Rm forces #Er(w) ≤ m and #E`(w) ≤ m. Since

the problem is symmetric, assume w.l.o.g. 4 ≥ #Er(w) ≥ #E`(w) ≥ 2.

We have three different situations:
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• #Er(w) = 2: Let E`(w) = {a1, a2}. According to (3), we have

#Er(a1w) = #Er(a2w) = 1. Let b1 be the unique letter in Er(a1w)

and b2 be the unique right extension of a2w. By Lemma 5.5, there

exist two return words of w starting with b1 and two return words

of w starting with b2. Set w1 = wb1, w2 = wb2.

• #Er(w) = 3: There exists a unique letter b1 ∈ Er(w) such that

two return words of w start with b1. As w is weak bispecial, the

inequality (3) gives

∑

a∈E`(w)

(#Er(aw)− 1) ≤ 1 .

If all aw have a unique right extension, then the letter a1 ∈
E`(wb1) is the unique letter for which at least two return words

start with a letter in Er(aw), which is not possible by Lemma 5.5.

Therefore there exists a unique a1 ∈ E`(w) with #Er(a1w) = 2,

and #Er(aw) = 1 for all a ∈ E`(w) \ {a1}. According to Lemma

5.5, there exists a letter a2 6= a1 such that at least two return

words start with a letter in E`(a2w). This implies b1 ∈ Er(a2w)

and thus b1 6∈ Er(a1w). Set w1 = a1w, w2 = wb1.

• #Er(w) = 4: For every b ∈ Er(w), there is a unique return word

of w starting with b. By Lemma 5.5, we have a1, a2 ∈ E`(w)

with #Er(aiw) ≥ 2. The inequality (3) for this case implies that

#Er(aiw) = 2. Set w1 = a1w, w2 = a2w.

Consider “complete return words of the set {w1, w2}”: words which

have either w1 or w2 as prefix, either w1 or w2 as suffix, and no other oc-

currence of w1 and w2. By the definitions of w1 and w2, there are exactly

two such words v1wi1 , v2wi2 with prefix w1 and two words v3wi3 , v4wi4

with prefix w2.
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If i1 = i2 = 2 and i3 = i4 = 1, then R4 implies that (2) holds.

If i1 = i2 = 1, then w1 has only the two return words v1, v2. If

i2 = i3 = i4 = 1, then the return words of w1 are v1v3, v1v4, v2. Similarly,

i3 = i4 = 2 and i1 = i2 = i3 = 2 are not possible.

The only remaining case is i1 = i4 = 1, i2 = i3 = 2. Then the return

words of w1 are v1 and v2v
ri
3 v4, i ∈ {1, 2, 3}, 0 ≤ r1 < r2 < r3. The

return words of w2 are v3 and v4v
si
1 v2, i ∈ {1, 2, 3}, 0 ≤ s1 < s2 < s3.

The return words of v2w2 are therefore of the form v2v
ri
3 v4v

sj

1 . Let S1

be the set of these 4 pairs (ri, sj). Similarly, let S2 be the set of the 4

pairs (si, rj) such that v4v
si
1 v2v

rj

3 is a return word of v4w1.

We show that there must be some i ∈ {1, 2, 3} such that (ri, s2) ∈
S1 and (ri, s3) ∈ S1, by considering the return words of vs2

1 w1 and of

vs2
1 v2w2. The return words of vs2

1 v2w2 are of the form vs2
1 v2tv

ri
3 v4v

sj−s2

1

with t ∈ (v∗3v4v
s1
1 v2)

∗, i ∈ {1, 2, 3} and j ∈ {2, 3}. For these t and ri,

vs2
1 v2tv

ri
3 v4 is a return word of vs2

1 w1. If there was no ri with (ri, s2) ∈ S1

and (ri, s3) ∈ S1, then these words would provide 4 different return words

of vs2
1 w1, wich contradicts R4 since v1 is another return word.

Similarly, we must have some i ∈ {1, 2, 3} such that (si, r2) ∈ S2 and

(si, r3) ∈ S2. By considering the return words of vs2
1 w1 and v4v

s2
1 w1, we

obtain as well the existence of some i ∈ {1, 2, 3} such that (r2, si) ∈ S1

and (r3, si) ∈ S1. Finally, we must also have some i ∈ {1, 2, 3} such that

(s2, ri) ∈ S2 and (s3, ri) ∈ S2.

Putting everything together, we have two possibilities for S1. Either

it contains (r1, s1) and no other pair (ri, sj) with i = 1 or j = 1, or

S1 = {(r1, s2), (r1, s3), (r2, s1), (r3, s1)}. Similarly, S2 contains (s1, r1) and

no other pair (s1, rj) or (si, r1), or S2 = {(s1, r2), (s1, r3), (s2, r1), (s3, r1)}.
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If (r1, s1) ∈ S1 and (s1, r1) ∈ S2, then v2v
r1
3 v4w1 has only one re-

turn word, v2v
r1
3 v4v

s1
1 . If (r1, s1) 6∈ S1 and (s1, r1) 6∈ S2, then v2v

r1
3 v4w1

has only two return words, v2v
r1
3 v4v

s2
1 and v2v

r1
3 v4v

s3
1 . If (r1, s1) ∈ S1

and (s1, r1) 6∈ S2, then the return words of v2v
r1
3 v4w1 are of the form

v2v
r1
3 v4v

s1
1 v2v

ri
3 v4v

sj

1 with (ri, sj) ∈ S1\{(r1, s1)}, thus there are only three

words. Similarly, v4v
s1
1 v2w2 has only three return words if (r1, s1) 6∈ S1

and (s1, r1) ∈ S2.

This shows that i1 = i4 = 1, i2 = i3 = 2 is impossible, and the lemma

is proved. ¤

7. Words associated with β-integers

In this section, we describe a new class of infinite words with the

property Rm. The language of these words is not necessarily closed under

reversal.

Consider the fixed point u = σ∞(0) of the primitive substitution

(4)

σ : 0 7→ 0t11

1 7→ 0t22
...

m− 2 7→ 0tm−1(m− 1)

m− 1 7→ 0tm

for some integers m ≥ 2, t1, tm ≥ 1 and t2, . . . , tm−1 ≥ 0. The incidence

matrix of σ is a companion matrix of the polynomial xm−t1x
m−1−· · ·−tm.

Let β > 1 be the dominant root of this polynomial (the Perron-Frobenius

eigenvalue of the matrix). If

tj · · · tm ≺ t1 · · · tm for all j ∈ {2, . . . , m},
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where ¹ denotes the lexicographic ordering, then β is a simple Parry

number (or simple β-number) and σ is a β-substitution, see e.g. Fabre [6].

It is easy to see that u codes in this case the sequence of distances between

consecutive nonnegative β-integers

Z+
β =

{ J∑
j=0

xjβ
j

∣∣∣∣J ≥ 0, xj ∈ Z, xj ≥ 0, xj · · · x0 ≺ t1 · · · tm for 0 ≤ j ≤ J

}

and a letter k corresponds to the distance tk+1/β+ · · ·+tm/βm−k. (0 cor-

responds to distance 1.)

Remark. The most prominent example of a β-substitution is the Fi-

bonacci substitution (m = 2, t1 = t2 = 1), where β is the golden mean.

It is not difficult to show that all prefixes of u are left special factors,

with all m letters being left extensions (see e.g. Frougny, Masáková and

Pelantová [10]). For every factor w, the tree of return words constructed

by the left extensions (see Section 3.2) contains therefore a node with

m children, the shortest prefix of u having w as suffix. The word u is

uniformly recurrent since all fixed points of primitive substitutions have

this property (Queffélec [13]). Therefore every factor w has at least m

return words. If there exists a left special factor which is not a prefix of

u, then this factor has more than m return words. By Proposition 3.1,

we obtain the following proposition.

Proposition 7.1. If u = σ∞(0) for some substitution σ of the form (4),

then it satisfies Rm if and only if C(n) = (m− 1)n + 1 for all n ≥ 0.

Bernat, Masáková and Pelantová [2] characterized the fixed points of

β-substitutions satisfying ∆C(n) = m− 1 for all n ≥ 0. The techniques

of their proof can also be used to construct non-prefix left special factors



SEQUENCES WITH CONSTANT NUMBER OF RETURN WORDS 19

if σ is a substitution of the form (4) which is not a β-substitution, and

their conditions can be reformulated as in the following corollary.

Corollary 7.2. If u = σ∞(0) for some substitution σ of the form (4),

then it has the property Rm if and only if

• tm = 1 and

• tj · · · tm−1t1 · · · tj−1 ¹ t1 · · · tm−1 for all j ∈ {2, . . . , m− 1}.

Note that the language of u is closed under reversal if and only if

t1 = t2 = · · · = tm−1. Then u is an Arnoux-Rauzy word of order m.
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