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Quantum Mechanics

Motivation: Quantum Mechanics

Quantum Mechanics
Electronic structure of molecules and solids that contain heavy atoms
=⇒ the use of relativistic kinematics is required

effects that do not change the symmetry of the problem (mass-velocity
terms, Darwin terms...)

effects that modify symmetry (spin-orbit coupling)

Computation

- without spin-orbit:
matrix elements ∈ 〈10−5, 1〉,
the smallest eigenvalue ∼ 10−9

- inclusion of spin-orbit coupling:
matrix is doubled in size and becomes complex ⇒ the numerical noise
will dramatically increase,
the smallest eigenvalue occurs twice,
classical techniques cannot be used directly.

J.J.Dongarra, J.R.Gabriel, D.D.Koelling, J.H.Wilkinson:Solving the Secular Equation
Including Spin Orbit Coupling for Systems with Inversion and Time Reversal Symmetry,
J. Comput. Phys., 54 (1984), 278–288.
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Quantum Mechanics

without spin orbit spin-orbit effects included

a ∈ R −→
(

α β

−β α

)
scalar matrix element 2× 2 matrix with complex elements

h = (a1, a2, a3, a4)∈ H

h̃ =

(
α β

−β α

)
, α = a1 + i a2, β = a3 + i a4, h̃ ∈ H̃

H and H̃ are isomorphic

quaternion arithmetic?

-increased accuracy
-economy of storage

× more computational effort

B. L. van der Waerden: Algebra I, 5. Aufl., Springer, Berlin, 1960 (1st ed. 1936)
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Graphics, Robotics,...

Rotation of vectors

Quaternions can be used to represent many operations in 3-D space, including
rotations, affine transformations and projections:

The rotation of the vector v about the vector u (‖u‖ = 1) by the angle θ:
v1 = (u · v)u . . . the projection of v onto u
v3 = v − (u · v)u . . . component of v orthogonal to u
v2 = u × v −→ vr = v1 + cosϑ v2 + sinϑ v3

Thus, vr = (u · v)u + cosϑ (v − (u · v)u) + sinϑ (u × v) .

Via quaternions:

p = (0, v) , q =

(
cos

ϑ

2
, u sin

ϑ

2

)
=⇒ pr = q p q−1 = (0, vr) .
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Broombridge, Dublin

Here as he walked by
on the 16th of October 1843
Sir William Rowan Hamilton

in a flash of genius discovered
the fundamental formula for

quaternion multiplication
i2 = j2 = k2 = ijk = −1

& cut it on a stone of this bridge.
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Idea: Numerical Linear Algebra for Quaternions

Janovská D., Opfer G.: Givens’ transformation applied to quaternion valued
vectors, BIT Numerical Mathematics 43, No.5 (2003), 991 – 1002.

Janovská D., Opfer G.: Givens transformation for quaternion-valued matrices
applied to Hessenberg reduction, ETNA, Electronic Transactions on Numerical
Analysis, Vol.20, 2005, pp.1 – 26.

Janovská D., Opfer G.: Computing quaternionic roots by Newton’s method,
Electronic Transactions on Numerical Analysis (ETNA), Vol.26 (2007), pp.82 –
102.

Janovská D., Opfer G.: Linear Quaternionic Systems, Mitt. Math. Ges. Hamburg
27 (2008), 223 – 234.

Janovská D., Opfer G.: Decompositions of quaternions and their matrix
equivalents. In: Matrix Methods: Theory, Algorithms, Applications, V. Olshevsky,
and E. Tyrtyshnikov eds., World Scientific Publishing Company (2010), 20 – 30.

Janovská D., Opfer G.: A note on the computation of all zeros of simple
quaternionic polynomials, SIAM J. Numer. Anal. 48 (2010), 244 – 256.

Janovská D., Opfer G.: The classification and the computation of the zeros of
quaternionic, two-sided polynomials, Numerische Mathematik, Volume 115, No.1
(2010), 81 – 100.

Janovská D., Opfer G.: The Nonexistence of Pseudoquaternions in C2×2,
Advances in Applied Clifford Algebras 21 (2011), 531 – 540.
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Basic definitions for quaternions

Let H := R4 be the skew field of quaternions

Let x = (x1, x2, x3, x4), y = (y1, y2, y3, y4) ∈ H.

The first component x1 . . . the real part of x , denoted by <x .

v = (x2, x3, x4) ∈ R3 . . . the vector part of x

The second component x2 . . . the imaginary part of x , denoted by =x .

x = (x1, 0, 0, 0) will be identified with x1 ∈ R
x = (x1, x2, 0, 0) will be identified with x1 + ix2 ∈ C
The conjugate of x will be defined by x = (x1,−x2,−x3,−x4)

The absolute value of x will be defined by |x | =
√

x2
1 + x2

2 + x2
3 + x2

4

The inverse quaternion is defined as x−1 =
x
|x |2 for x ∈ H\{0}

Four basis elements of H:
1 = (1, 0, 0, 0), i = (0, 1, 0, 0), j = (0, 0, 1, 0), k = (0, 0, 0, 1),
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Let x = (x1, x2, x3, x4), y = (y1, y2, y3, y4) ∈ H. Then

x + y = (x1 + y1, x2 + y2, x3 + y3, x4 + y4) .

Let x = (x1, x2, x3, x4) ∈ H, x can be represented as

x = x1 + x2 i + x3 j + x4 k or as x = (x1, v) , x1 ∈ R , v = (x2, x3, x4) ∈ R3 .

H has the ordinary vector space structure with an additional multiplicative
operation H×H −→ H defined by a multiplication table for the basis
elements:

1 i j k
1 1 i j k
i i −1 k −j
j j −k −1 i
k k j −i −1

(1)

In general, multiplication is not commutative here, but there are some classes
of quaternions for which the product commutes (for example if one of the
factors is real).
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The multiplication rule: x = (x1, x2, x3, x4), y = (y1, y2, y3, y4) ∈ H , then

xy = (x1y1 − x2y2 − x3y3 − x4y4, x1y2 + x2y1 + x3y4 − x4y3,
x1y3 − x2y4 + x3y1 + x4y2, x1y4 + x2y3 − x3y2 + x4y1)

(16 multiplications and 12 additions of real numbers).

The multiplication rule implies

<(xy) = <(yx) , αx = xα for x , y ∈ H, α ∈ R . (2)

Remark If we represent quaternions x and y as x = (x1, v1), y = (y1, v2),
x1, y1 ∈ R, v1, v2 ∈ R3 then we have

xy = (x1y1 − v1 · v2, x1v2 + y1v1 + v1 × v2)

(· means a scalar, × means a vector product in R3).
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Classes of equivalence

Classes of equivalence

Two quaternions x and y are called equivalent, x ∼ y, if there is h ∈ H\{0}
such that y = h−1xh. Then we denote [x ] an equivalence class of the
quaternion x ,

[x ] = {y ∈ H : y = h−1xh for all h ∈ H\{0}}.

Lemma Two quaternions x and y are equivalent if and only if

<x = <y and |x | = |y |. (3)

Proof.

(a) Let x ∼ y , i.e., y = α−1xα or αy = xα for some α ∈ H\{0}.

Then |αy | = |xα| =⇒ |α||y | = |x ||α| =⇒ |x | = |y | .

The formula (2) implies that
<y = <

(
α−1 xα

)
= <

(
xα α−1) = <x .
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Classes of equivalence

(b) Let <x = <y and |x | = |y | for two quaternions x , y . We have to show
that there is an α ∈ H\{0} such that y = α−1xα, i.e., αy = xα.

Let us set

u = y−x = (u1, u2, u3, u4), v = y+x = (v1, v2, v3, v4), α = (α1, α2, α3, α4).

Because <x = <y , we have u1 = 0. Then αy = xα is equivalent to the
homogeneous real 4×4 system

Mα = 0, where M =


0 −u2 −u3 −u4

u2 0 v4 −v3

u3 −v4 0 v2

u4 v3 −v2 0

 .

We have to show that M is singular under the condition |x | = |y |, i.e.,
under the condition u2v2 + u3v3 + u4v4 = 0.

The expansion of M with respect to the first column reveals that under
this condition all four summands in detM vanish, thus M is singular and
αy = xα has a nontrivial solution α.
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Classes of equivalence

Corollary. Let x = (x1, x2, x3, x4). Then the equivalence class [x ] contains
exactly two complex numbers a and a, where

a = (x1,
√

x2
2 + x2

3 + x2
4 , 0, 0) = x1 + |xv | i ∈ [x ] ,

i.e., a is the only complex element in [x ] with non negative imaginary part.

a . . . the complex representative of [x ].

Remark

If a is real then [a] = {a} , i.e. [a] contains only one element {a}

If a is not real, then [a] always contains infinitely many elements,

[a] = {z ∈ H, <z = <a, |z| = |a|} , . . . the surface of a ball in R3 .
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Simple quaternionic polynomials

Let pn(z) be a given quaternionic polynomial of degree n,

pn(z) =
n∑

j=0

ajz
j , z, aj ∈ H, j = 0, 1, 2, . . . , n, a0, an 6= 0 , (4)

a0 6= 0 . . . the origin is never a zero of pn

an 6= 0 . . . polynomial degree is not less then n
pn(z) . . . one-sided (or simple) quaternionic polynomial.

In general, if a zero z0 of a quaternionic polynomial is real, then
h−1z0h = z0h−1h = z0 , and the real zero is the only zero of this quaternionic
polynomial.

Example Let p2(z) = z2 + 1 . . . zeros ±i.
So, there is the only one class of zeros, the complex representative is +i . All
zeros have the form h−1(±i)h for all h ∈ H, h 6= 0 .

This polynomial as the quaternionic one sided polynomial has infinitely many
quaternionic zeros.
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Isolated and spherical zeros

Isolated and spherical zeros

Definition Let z0 be a zero of pn. If z0 is not real and it has the property

pn(z) = 0 for all z ∈ [z0]

we say that z0 generates a spherical zero or is a spherical zero.

If z0 is real or does not generate a spherical zero, it is called an isolated zero.

Remarks

z0 a zero of pn . . . all elements of [z0] are zeros or only z0 is zero

two zeros ±i of p2(z) = z2 + 1 generate the same spherical zero

More generally, all non real zeros of polynomials with real coefficients
are spherical zeros

Real zeros of any polynomial are always isolated zeros

Eilenberg and Niven, 1944: There exists at least one zero

Pogorui and Shapiro, 2004: The number of both types of zeros together
does not exceed n (all spherical zeroes of the same equivalence class
count as one zero)
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All powers of a quaternion

All powers of a quaternion

Iteration process (two term recursion):

z j = αjz + βj , αj , βj ∈ R, j = 0, 1, . . . , where (5)

α0 = 0, β0 = 1,

αj+1 = 2<z αj + βj ,

βj+1 = −|z|2αj , j = 0, 1, . . .

In order to compute all powers of z ∈ H up to degree n, one needs n − 1
quaternionic multiplications (one quaternionic multiplication = 28 flops),
whereas the recursion needs only 3n flops.

Example Let us compute z2 = α2z + β2.

α0 = 0, β0 = 1, α1 = β0 = 1, β1 = −|z|2α0 = 0,

α2 = 2<z α1 + β1 = 2<z, β2 = −|z|2

=⇒ z2 = 2<z z − |z|2.
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All powers of a quaternion

The sequence {αj} can be written as a difference equation of order two with
constant coefficients.

αj+1 = 2<z αj − |z|2αj−1 , j = 0, 1, . . .

Then for z /∈ R, the closed form of the solution for αj reads

αj =
={uj

1}√
|z|2 − (<z)2

, u1 := <z + i
√
|z|2 − (<z)2,

√
|z|2 − (<z)2 > 0, j ≥ 0,

(6)
where u1 is one of the two complex solutions of u2 − 2<z u + |z|2 = 0.

Remark The similar iteration as in (5) was given by Pogorui and Shapiro,
2004. They used a three term recursion whereas our recursion is a two term
recursion. Thus, they differ, formally. In some cases two term recursions are
more stable, than the corresponding three term recursions. For an example,
see Laurie, 1999.
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All powers of a quaternion

By means of (5), the polynomial pn can be written as

pn(z) =
n∑

j=0

ajz
j =

n∑
j=0

aj(αjz + βj) =
( n∑

j=0

αjaj
)
z +

n∑
j=0

βjaj =: A(z)z + B(z).

(7)
Theorem Let z0 ∈ H be fixed. Then both A(z) and B(z) are constant for all
z ∈ [z0]. Let z0 be a zero of pn. Then,

pn(z0) = A(z)z0 + B(z)= 0 for all z ∈ [z0]. (8)

The quantities A, B in (8) can only vanish simultaneously. If A(z0) = 0 and if
z0 is not real, then, z0 generates a spherical zero of pn. If A(z0) 6= 0, then z0

is an isolated zero.

Proof From (5) it is clear, that the coefficients αj , βj , j ≥ 0, are the same
for all z with the same <z, |z|. Thus, the coefficients are the same for all
z ∈ [z0], therefore, A(z) = const, B(z) = constfor all z ∈ [z0]. If A(z0) = 0,
then necessarily B(z0) = 0, and vice versa. And p(z) = 0 for all z ∈ [z0].
This implies that z0 generates a spherical zero if z0 is not real. Recall, that
z0 6= 0. Let A(z0) 6= 0 and z0 be not isolated. This case leads to a
contradiction as shown in the next theorem.
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All powers of a quaternion

Theorem Let z0, z1 ∈ H be two different zeros of pn with z0 ∈ [z1].
Then pn(z) = 0 for all z ∈ [z1], z0 generates a spherical zero of pn,
and A(z) = B(z) = 0 for all z ∈ [z0].
In particular, z0 /∈ R is a spherical zero of pn if and only if A(z0) = 0.

Proof Since z0, z1 are assumed to be different and to belong to the same
equivalence class, they cannot be real. From (8) it follows that

pn(zj) = A(z)zj + B(z) = 0 for all z ∈ [z0] = [z1], j = 0, 1.

Taking differences, we obtain

pn(z0)− pn(z1) = A(z)(z0 − z1) = 0 for all z ∈ [z1] = [z0],

implying A(z) = 0. According to the preceding Theorem, the zero z0

generates a spherical zero of pn. If A(z0) 6= 0, the zero, z0, cannot be
spherical. See also Pogorui and Shapiro, 2004.
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Classification of zeros

Classification of zeros of one-sided quaternionic polynomials

Thus, we have the following classification of zeros z0 of pn given in (4):

z0 is real. By definition, z0 is isolated.
z0 is not real.

– A(z0) = 0 ⇒ z0 is spherical, all z ∈ [z0] are zeros of pn

– A(z0) 6= 0 ⇒ z0 is isolated.

Example (SIAM J. Numer. Anal. 48 (2010) Let

p6(z) := z6 + j z5 + iz4 − z2 − j z − i.

There are the following five zeros:

1. z1,2 = ±1 are two real, isolated zeros;

2. z3 = i is a spherical zero;

3. z4 := (1,−1,−1,−1)/2, z5 := (−1, 1,−1,−1)/2 are two isolated
zeros.

The computation of all zeros of pn, including their types, can be reduced to
the computation of all zeros of a real polynomial of degree 2n.
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The companion polynomial

The companion polynomial

Let pn be a one sided quaternionic polynomial with the quaternionic
coefficients a0, a1, . . . , an. We define the polynomial q2n of degree 2n with
real coefficients by

q2n(z) :=
n∑

j,k=0

ajak z j+k =
2n∑

k=0

bk zk , z ∈ C, where (9)

bk :=

min(k,n)∑
j=max(0,k−n)

ajak−j ∈ R, k = 0, 1, . . . , 2n. (10)

We will call q2n the companion polynomial of the quaternionic polynomial pn.
It always should be regarded as a polynomial over C, not over H.
The companion polynomial q2n has real coefficients, we may assume that it is
always possible to find all (real and complex) zeros of q2n.

How are the quaternionic zeros of pn

related to the real or complex zeros of q2n?

The idea of the companion polynomial comes from Niven (1941) or more
recently from Pogorui and Shapiro (2004).



Motivation Numerical Linear Algebra for Quaternions Basic definitions for quaternions Simple quaternionic polynomials Polynomials with coefficients on the right side of the powers Two sided type quaternionic polynomials References

The companion polynomial

Lemma Let pn(z) = Az + B, A = A(z), B = B(z), see (7). Then

q2n(z) = |A|2z2 + 2<(AB)z + |B|2. (11)

Proof Let z j = αjz + βj . Then, we have

q2n(z) =
n∑

j,k=0

ajak z j+k =
n∑

j=0

aj

(
n∑

k=0

ak zk

)
z j =

n∑
j=0

aj(Az + B)z j

=
n∑

j=0

aj(Az + B)(αjz + βj) [αj , βj ∈ R]

=
n∑

j=0

(αjaj)Az2 +
n∑

j=0

(βjaj)Az +
n∑

j=0

(αjaj)Bz +
n∑

j=0

(βjaj)B

= |A|2z2 + 2<(AB)z + |B|2.

Thus, the formula (11) is correct.
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The companion polynomial

Theorem (real zeros) Let z0 ∈ R. Then,

q2n(z0) = 0 ⇐⇒ pn(z0) = 0.

The set of real zeros is the same for pn and for q2n.

Proof On the real line z ∈ R, we have q2n(z) = |pn(z)|2.

Remark Since q2n has real coefficients and q2n(z) = |pn(z)|2 for z ∈ R,
the zeros of q2n come always in pairs

. . . r , r , . . . , a + ib, a− ib, . . . , r , a, b ∈ R.

Theorem (spherical zeros) Let z0 be a non real zero of q2n and let
A(z0) = 0, far A see (7). Then, z0 generates a spherical zero of pn.

Proof Equation (8) implies that B(z0) = 0 as well, where the quaternion B
is also defined in (7). Thus, pn(z0) = 0 and z0 generates a spherical zero of
pn.
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The companion polynomial

The last case: we have to investigate non real zeros x of q2n for which
A(x) 6= 0. In general, we have pn(x) 6= 0. However, we try to find a z ∈ [x ]
such that pn(z) = 0. If that is possible, it follows from (8) and (7) that z must
necessarily have the form

z := −A(x)−1B(x) = −A(x)B(x)

|A(x)|2 . (12)

We have to show, that z ∈ [x ], i.e. that <z = <x and |z| = |x |.

Lemma Let x be a non real zero of q2n with A(x) 6= 0. Then for z in (12), we
have

<z = <x and |z| = |x |.

Let us set

x = (x1, x2, 0, 0); z := (z1, z2, z3, z4); AB := (v1, v2, v3, v4). (13)

Theorem Let pn be given and let q2n be the corresponding companion
polynomial. Assume that x is a non real, complex zero of q2n with the
property that A(x) 6= 0. Then, z in (12) is an isolated zero of pn. Moreover, z
can be written in the form

z = (x1,−
|x2|
|v | v2,−

|x2|
|v | v3,−

|x2|
|v | v4) . (14)
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The companion polynomial

Is it possible that pn has a zero which

we do not find by checking all zeros of q2n?

Theorem Let pn(z) = 0 where pn is one sided quaternionic polynomial.
Then, there is an x ∈ C with x ∈ [z] such that q2n(x) = 0, where q2n is the
companion polynomial of pn.

Conclusion

The proposed algorithm finds all zeros of the one sided quaternionic
polynomial pn.

The set of zeros consists of at least one and at most n elements, where
the spherical zeros of the same equivalence class count as one zero.
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The companion polynomial

Example

Example Let
p6(z) := z6 + jz5 + iz4 − z2 − jz − i.

Then, the companion polynomial for p6 is

q12(x) = x12 + x10 − x8 − 2x6 − x4 + x2 + 1.

The twelve zeros of q12 are

1 (twice), −1 (twice), ±i (twice each), 0.5 (±1± i).

There are two different, real zeros, z1,2 = ±1 which are also zeros of p6.
There is one spherical zero, z3 = i, of p6 (−i generates the same spherical
zero).
And, finally there are two isolated zeros which have to be computed from
x = 0.5 (±1± i) by formula (14). This formula yields

z4 := 0.5 (1,−1,−1,−1), z5 := 0.5 (−1, 1,−1,−1).
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The companion polynomial

Numerical consideration

The polynomial in the example has the property that
p6(z) = (z2 + jz + i)(z4 − 1). Normally, one is not able to guess the zeros. If
we compute the zeros of q12 by MATLAB computation (results are listed in
Table 1) they are not as precise as desired, though the integer coefficients of
q12 are exact.

Table 1. Zeros of q12 by MATLAB computations and correct values.

1 −1.00000000000000 +0.00000001131891i −1
2 −1.00000000000000 −0.00000001131891i −1
3 −0.50000000000000 +0.86602540378444i 0.5(−1 +

√
3 i)

4 −0.50000000000000 −0.86602540378444i 0.5(−1−
√

3 i)
5 1.00000000000000 +0.00000001376350i 1
6 1.00000000000000 −0.00000001376350i 1
7 0.50000000000000 +0.86602540378444i 0.5(1 +

√
3 i)

8 0.50000000000000 −0.86602540378444i 0.5(1−
√

3 i)
9 0.00000000001566 +1.00000000619055i i

10 0.00000000001566 −1.00000000619055i −i
11 −0.00000000001566 +0.99999999380945i i
12 −0.00000000001566 −0.99999999380945i −i
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The companion polynomial

Remarks

The four zeros with multiplicity one, numbered 3,4,7,8 in Table 1, are precise
to machine precision, however, all other zeros, which are zeros with
multiplicity 2 have errors of magnitude 10−8. It is easy to improve these
zeros. If z is one of the zeros with multiplicity two, an application of one step
of Newton’s method applied to q′2n = 0 with starting point z is sufficient to
obtain machine precision. For zeros of multiplicity four one should apply
Newton’s method to q′′′2n = 0, etc., possibly with two steps.

We made some hundred tests with polynomials pn of degree n ≤ 50 with
random integer coefficients in the range [−5, 5] and with real coefficients in
the range [0, 1]. In all cases we found only (non real) isolated zeros z. The
test cases showed |pn(z)| ≈ 10−13. Real zeros and spherical zeros did not
show up. If n is too large, say n ≈ 100, then it is usually not any more
possible to find all zeros of the companion polynomial by standard means
(say roots in MATLAB) because the coefficients of the companion
polynomial are too large.
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Summary of the algorithm

Algorithm for finding zeros of one sided polynomial

(4′) pn(z) :=
n∑

j=0

ajz
j , z, aj ∈ H, j = 0, 1, . . . , n, an = 1 , a0 6= 0, n ≥ 1

1. Compute the real coefficients b0, b1, . . . , b2n of the companion
polynomial q2n by formula (10). Make sure that they are real.

2. Compute all 2n (real and complex) zeros of q2n, (in MATLAB, use the
command roots ). Denote these zeros by z1, z2, . . . , z2n and order these
zeros (if necessary) such that z2j−1 = z2j , j = 1, 2, . . . , n. If a specific
z2j0−1 is real, then, it means that z2j0−1 = z2j0 .

3 Define an integer vector ind (like ”indicator”) of length n and set all
components to zero. Define a quaternionic vector Z of length n and set
all components to zero.
For j:=1:n do Put z := z2j−1.
(a) if z is real, Z (j) := z; go to the next step; end if

(b) Compute v := A(z)B(z) by formula (7), with the help of formulas (5).
(c) if v = 0, put ind (j) := 1; Z (j) := z; go to the next step; end if

(d) if v 6= 0, let (v1, v2, v3, v4) := v . Compute |w | :=
√

v2
2 + v3

3 + v2
4 , put

(14′) Z (j) :=

(
<(z),−

|=(z)|
|w |

v2,−
|=(z)|
|w |

v3,−
|=(z)|
|w |

v4

)
.

end if ; end for
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Polynomials with coefficients on the right side of the powers

Let

p̃n(z) :=
n∑

j=0

z jaj , z, aj ∈ H, j = 0, 1, 2, . . . , n, a0 an 6== 0 . (15)

be a given polynomial with coefficients on the right side of the powers.
We apply the former theory to

pn(z) := p̃n(z) =
n∑

j=0

ajz
j , z, aj ∈ H, j = 0, 1, 2, . . . , n, a0 an 6== 0.

(16)
Lemma The two polynomials

p̃n(z) :=
n∑

j=0

z jaj and pn(z) :=
n∑

j=0

ajz
j

have the same real and spherical zeros.
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Two-sided type quaternionic polynomials

p(z) :=
n∑

j=0

ajz
jbj , z, aj , bj ∈ H, a0b0 6= 0, anbn 6= 0, (17)

A general, quaternionic polynomial consists of a sum of monomials of
degree j , tj(z) := a0j · z · a1j · · · aj−1,j · z · ajj , z, a0j , a1j , . . . , ajj ∈ H, j ≥ 0.
Since there may be several terms of the same degree we have to enumerate
the terms. We do that in the form

tjk (z) := a(k)
0j · z · a

(k)
1j · · · a

(k)
j−1,j · z · a

(k)
jj , k = 1, 2, . . . , kj , kj ≥ 0. (18)

The case kj = 0 means that there is no monomial of degree j . A general,
quaternionic polynomial of degree n takes the form

p(z) :=
n∑

j=0

kj∑
k=1

tjk (z). (19)

Let z ∈ R be a real zero of p, defined in (19). Since a real z commutes with
all quaternions the polynomial can be in this case written in the form

p(z) =
n∑

j=0

Ajz
j where Aj :=

kj∑
k=1

a(k)
0j a(k)

1j · · · a
(k)
jj , z ∈ R. (20)
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Example

Let z ∈ R ,
p(z) := z2 + azbzc + dze + f . (21)

The polynomial (20) reads in this case

p(z) = (1 + abc)z2 + dez + f .

We choose

a := i, b := j, c := −k, d := i + j, e := j + k, f := −1− i + j − k.

Then p(z) = 2z2 + (−1, 1,−1, 1)z + (−1,−1, 1,−1).

The companion polynomial q of degree four has one as a double zero and no
other real zero. Thus, the polynomial p in (21) has exactly one real zero,
namely one. If in the general case the companion polynomial q has no real
zero, then also the given polynomial p in (19) has no real zero. Because of
these results we will concentrate to non real zeros in the sequel.

Now, we will treat the two–sided quaternionic polynomial in the form (17). To
the polynomials with multiple terms of the same degree we will return later.
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Types of zeros of two sided polynomials

Types of zeros of two sided polynomials

We will again use the iteration process (5) for computing of α, β in
z j = αz + β with real α, β, and also the closed form solution obtained by
using the theory of difference equations for αj in the case z /∈ R, namely the
formula (6).

By means of (5) the polynomial p can be written as

p(z) :=
n∑

j=0

ajz
jbj =

n∑
j=0

aj(αjz + βj)bj (22)

=
n∑

j=0

αjajzbj +
n∑

j=0

βjajbj = C(z) + B(z), where (23)

C(z) :=
n∑

j=0

αjajzbj , B(z) :=
n∑

j=0

βjajbj . (24)

Lemma Let C be defined as in (24). Then, C : R4 → R4 is a linear
mapping over R. Let z0 be non real. Then, B(z), defined in (24), is constant
for z ∈ [z0]. If p(z) = 0 for some z ∈ H, then C(z) = B(z) = 0 or C(z) 6= 0
and B(z) 6= 0.
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Isomorphic matrix representation for quaternions

Isomorphic matrix representation for quaternions

We introduce two mappings ω1, ω2 : H → R4×4 by

ω1(a) :=


a1 −a2 −a3 −a4

a2 a1 −a4 a3

a3 a4 a1 −a2

a4 −a3 a2 a1

 ∈ R4×4, (25)

ω2(a) :=


a1 −a2 −a3 −a4

a2 a1 a4 −a3

a3 −a4 a1 a2

a4 a3 −a2 a1

 ∈ R4×4. (26)

The first mapping ω1 represents the isomorphic image of a quaternion
a = (a1, a2, a3, a4) in the matrix space R4×4. Thus, we have

ω1(ab) = ω1(a)ω1(b).

The second mapping ω2 (Aramanovitch, 1995) has the remarkable property
that it reverses the multiplication order

ω2(ab) = ω2(b)ω2(a).

The two matrices ω1(a), ω2(b) coincide if and only if a = b ∈ R.
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Isomorphic matrix representation for quaternions

Remark From the definition (25), (26) it follows that

ω1(a)T = ω1(a), ω2(b)T = ω1(b). (27)

Both matrices are orthogonal in the sense

ω1(a)ω1(a)T = ω1(a)ω1(a) = |a|2 I, ω2(b)ω2(b)T = |b|2 I.

Let a := (a1, a2, a3, a4) ∈ H. We introduce a simple, but very useful column
operator col : H → R4 by

col(a) :=


a1

a2

a3

a4

 , a quaternion as a matrix with one column and four rows.

Lemma The column operator is linear over R, i. e.

col(αa + βb) = αcol(a) + βcol(b), a, b ∈ H, α, β ∈ R.

Lemma For arbitrary quaternions a, b, c we have

col(ab) = ω1(a)col(b) = ω2(b)col(a), (28)

col(abc) = ω1(a)ω2(c)col(b). (29)

Let us put ω3(a, b) := ω1(a)ω2(b) ∈ R4×4, a, b ∈ H.
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Isomorphic matrix representation for quaternions

Lemma The matrix ω3(a, b) is normal and orthogonal in the sense

ω3(a, b)Tω3(a, b) = ω3(a, b)ω3(a, b)T = |a|2|b|2 I.

Thus, all eigenvalues of ω3(a, b) have the same absolute value |a||b|.

Theorem Let p(z) := C(z) + B(z) be defined as in (22) to (24). Then,

col(p(z)) =

 n∑
j=0

αjω3(aj , bj)

 col(z) +
n∑

j=0

βjcol(ajbj) (30)

=: A(z)col(z) + col(B(z)), where (31)

A(z) :=

 n∑
j=0

αjω3(aj , bj)

 ∈ R4×4, col(B(z)) :=
n∑

j=0

βjcol(ajbj).(32)

Lemma Let z0 be non real. Then, the matrix A(z), defined in (32), is
constant for z ∈ [z0].
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Isomorphic matrix representation for quaternions

Instead of considering the equation p(z) = 0 we consider the equivalent
equation

P(z) := col(p(z)) = A(z)col(z) + col(B(z)) = col(0) =


0
0
0
0

= 0. (33)

Theorem Let z be a non real zero of p such that equation (33) is valid.
Then, this equation remains valid if in A(z), B(z) the zero z is replaced with
the complex representative z0 of [z].

Corollary In order to find the non real zeros z ∈ H of p, defined in (17), it is
sufficient to find the complex representatives z0 of [z].
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Isomorphic matrix representation for quaternions

The matrix A(z), occurring in (33) may be singular or non singular:

Theorem Let z1, z2 be two different but equivalent zeros of a polynomial p
defined in (17). Then, A := A(z1) = A(z2), and A is singular, where A(z) is
defined in (32).

Proof Let p(zj) = 0 for j = 1, 2 . Then

col(p(zj)) = B(zj) + A(zj)col(zj) = 0 .

We put B := B(z1) = B(z2) and A := A(z1) = A(z2) . Taking differences, we
obtain

col(p(z1))− col(p(z2)) = Acol(z1 − z2) = 0 .

Since z1 − z2 6= 0, the matrix A must be singular.
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Classification of zeros

Classification of the zeros of two–sided quaternionic polynomials

Definition Let z be a zero of p, defined in (17), and let z0 ∈ [z] be the
complex representative of [z]. We classify the zeros z of p with respect to the
rank of A(z0).

The zero z will be called zero of type k if rank(A(z0)) = 4− k , 0 ≤ k ≤ 4.

A zero of type 4 (rank(A(z0)) = 0) will be called spherical zero. It has
the property that all z ∈ [z0] are zeros.

A zero of type 0 will be called isolated zero. In this case

z = −(A(z0))
−1col(B(z0))

is the only zero in [z0].

We will also call a real zero an isolated zero.
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Numerical considerations

Numerical considerations

The equations (30) to (33) read

(33) P(z) := col(p(z)) = A(z)col(z) + col(B(z)) = 0.

A standard technique for solving such a system is Newton’s method. In short,
this technique results in solving the following linear equation for s, repeatedly:

P(z) + P′(z)s = 0; z := z + s, (34)

where in the beginning one needs an initial guess z.
In order to compute the (4× 4) Jacobi matrix P′ we use numerical
differentiation.
Let ek , k = 1, 2, 3, 4 be one of the four standard unit vectors in R4,
z := (z1, z2, z3, z4). Then,

∂P
∂zk

(z) ≈ P(z + hek )− P(z)

h
, k = 1, 2, 3, 4, h ≈ 10−7, (35)

P′(z) :=

(
∂P
∂z1

(z),
∂P
∂z2

(z),
∂P
∂z3

(z),
∂P
∂z4

(z)

)
. (36)

The choice h ≈ 10−7 is the standard choice for computers with machine
precision of ≈ 10−15. This choice implies a good balance between the round
off and truncation errors.
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Number of zeros of quaternionic polynomials

The number of zeros of quaternionsc polynomials

Since the polynomial p(z) := z2 + 1 has already infinitely many zeros in H, it
makes no sense to count the individual zeros.

Definition Let p be any quaternionic polynomial of degree n ≥ 2. By
#Z (p) we understand the number of equivalence classes in H which contain
zeros of p. We call this number, essential number of zeros of p.

By this definition, p(z) := z2 + 1 has one essential zero, since i and −i are
located in the same equivalence class.

All polynomials with real coefficients and degree n as well as all quaternionic,
one–sided polynomials of degree n have at most n essential zeros
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Number of zeros of quaternionic polynomials

Theorem Let p be a quaternionic, two–sided polynomial of degree n. Then,
#Z (p), the essential number of zeros of p, is, in general, not bounded by n.

Example Let p(z) := a3z3b3 + a2z2b2 + a1zb1 + c0, where

a3 := (1, 1, 0, 0), b3 := (−1,−1,−1, 0), c0 := (2, 0, 0, 0).
a2 := (−1, 0, 1, 1), b2 := (0,−1, 0, 1),
a1 := (0,−1, 1, 1), b1 := (1, 0, 0, 1),

The polynomial p is of degree three and the essential number of zeros of p is
five.

Conjecture Let p be a quaternionic two–sided polynomial of degree n of
the form (17). Then, the essential number of zeros of p will not exceed 2n:

#Z (p) ≤ 2n .
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A. B. Castro, D. Gómez, P. Quintela, P. Saldago (eds), Springer, Berlin,
Heidelberg, New York,2006, 945-953.
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