Greedy and lazy expansions in the negative base $-\phi$

Tom Hejda, Zuzana Masáková and Edita Pelantová tohecz@gmail.com

Doppler Institute & Department of Mathematics, FNSPE, Czech Technical University in Prague

Combinatorial and Algebraic Structures Seminar 2011, October 25

Numeration systems

Numeration system is a system of representations of (some) real numbers.

We consider

- real case:
- base $\beta \in \mathbb{R}$ with $|\beta| > 1$;
- real numbers from some finite interval.

Definition

String $\mathbf{a} = \bullet a_1 a_2 a_3 \dots$ represents $x \in \mathbb{R}$ in the base β , if

$$x = \frac{a_1}{\beta} + \frac{a_2}{\beta^2} + \frac{a_3}{\beta^3} + \cdots$$

Terminology: representation (any string) vs. expansion (algorithm).

Give:

- ullet an interval \mathcal{I} :
- a transformation $T: \mathcal{T} \mapsto \mathcal{T}$.

Compute:

- the digit function $D(x) := \beta x T(x)$;
- the alphabet of digits $\mathcal{A} := \mathcal{D}(\mathcal{I})$

Restriction: The alphabet is finite.

Give:

- ullet an interval \mathcal{I} :
- a transformation $T: \mathcal{T} \mapsto \mathcal{T}$.

Compute:

- the digit function $D(x) := \beta x T(x)$;
- the alphabet of digits $\mathcal{A} := D(\mathcal{I})$

Restriction: The alphabet is finite.

Example (Binary expansions)

Let

$$\beta := 2$$
,

$$\mathcal{I}:=[0,1),$$

$$\mathcal{I} := [0, 1), \qquad \mathcal{T}(x) := \{2x\}$$

Then

$$D(x) = 2x - \{2x\} = |2x|$$
 and $A = \{0, 1\}$.

Lazy & greedy in minus golden ratio

Give:

- \bullet an interval \mathcal{I} ;
- a transformation $T: \mathcal{I} \mapsto \mathcal{I}$.

Compute:

- the digit function $D(x) := \beta x T(x)$;
- ullet the alphabet of digits $\mathcal{A}:=D(\mathcal{I})$

Restriction: The alphabet is finite.

Example (Rényi expansions in the golden mean base)

Let

$$\beta := \phi = \frac{1+\sqrt{5}}{2}, \qquad \mathcal{I} := [0,1), \qquad T(x) := \{\phi x\}$$

Then

$$D(x) = \phi x - \{\phi x\} = |\phi x|$$
 and $A = \{0, 1\}.$

Give:

- \bullet an interval \mathcal{I} :
- a transformation $T: \mathcal{I} \mapsto \mathcal{I}$.

Compute:

- the digit function $D(x) := \beta x T(x)$;
- the alphabet of digits $\mathcal{A} := \mathcal{D}(\mathcal{I})$

Restriction: The alphabet is finite.

Example (Ito-Sadahiro expansions in the minus golden mean base)

Let

$$\beta := -\phi, \qquad \mathcal{I} := [-\frac{1}{\phi}, \frac{1}{\phi^2}), \qquad \mathcal{T}(x) := \{-\phi x + \frac{1}{\phi}\} - \frac{1}{\phi}$$

Then

$$D(x) = \lfloor -\phi x + \frac{1}{\phi} \rfloor$$
 and $\mathcal{A} = \{0, 1\}.$

Numeration systems — our approach

Give:

- a base β with $|\beta| > 1$;
- an alphabet $\mathcal{A} \subseteq \mathbb{R}$ (not necessarily integer);
- some condition **C** on the representations.

Compute:

- the maximal interval $\mathcal{I} = \left\{ \sum_{i=1}^{\infty} a_i \beta^{-i} \middle| a_i \in \mathcal{A} \right\}$;
- the algorithm to obtain the representation $(x)_{\beta,\mathcal{A},\mathbf{C}} = \bullet a_1 a_2 a_3 \dots$, let us call it "iterating a transformation"

Restriction:

- condition C is "nice";
- ullet the iteration of the "transformation" stays in ${\cal I}$.

Definition (Lexicographical ordering)

Let $\mathbf{a}=ullet a_1a_2a_3\dots$ and $\mathbf{b}=ullet b_1b_2b_3$ be representations. Then $\mathbf{a}\prec_{\mathsf{lex}}\mathbf{b}$ if

$$a_k < b_k$$
 for $k = \min\{i \ge 1 | a_i \ne b_i\}$.

Definition (Lexicographical ordering)

Let $\mathbf{a} = ullet a_1 a_2 a_3 \dots$ and $\mathbf{b} = ullet b_1 b_2 b_3$ be representations. Then $\mathbf{a} \prec_{\mathsf{lex}} \mathbf{b}$ if

$$a_k < b_k$$
 for $k = \min\{i \ge 1 | a_i \ne b_i\}$.

Definition (Alternate ordering)

Let $\mathbf{a} = ullet a_1 a_2 a_3 \dots$ and $\mathbf{b} = ullet b_1 b_2 b_3$ be representations. Then $\mathbf{a} \prec_{\mathsf{alt}} \mathbf{b}$ if

$$(-1)^k a_k < (-1)^k b_k$$
 for $k = \min\{i \ge 1 | a_i \ne b_i\}$.

Idea for the condition C: Let us take extremal representations.

Idea for the condition C: Let us take extremal representations.

Definition (Lazy and greedy representations)

Let b > +1 be a positive base. The maximal representation with respect to the lexicographical order is called the **greedy representation**, the minimal one is the **lazy representation**.

Idea for the condition \mathbf{C} : Let us take extremal representations.

Definition (Lazy and greedy representations)

Let b > +1 be a positive base. The maximal representation with respect to the lexicographical order is called the greedy representation, the minimal one is the lazy represetation.

Let b < -1 be a negative base. The maximal representation with respect to the alternate order is called the greedy representation, the minimal one is the lazy represetation.

Idea for condition **C** – positive base

Consider the base $\beta = +\phi$ and the alphabet $\mathcal{A} = \{0,1\}$. Then $\mathcal{I} = [0,\phi]$. The number $\frac{1}{2} \in \mathcal{I}$ has representations:

Representation condition C		representation of $\frac{1}{2}$
Rényi	take maximal digit in $\mathcal{I}_R = [0,1)$	$(\frac{1}{2})_R = \bullet 0(100)^\omega = \bullet 0100100100$
Greedy	take lex. maximal	$(\frac{1}{2})_G = \bullet 0(100)^\omega = \bullet 0100100100\dots$
Lazy	taky lex. minimal	$(\frac{1}{2})_L = \bullet 0(011)^\omega = \bullet 0011011011\dots$

Minimal polynomial of ϕ is $x^2 = x + 1$, hence $100 \leftrightarrow 011$.

Idea for condition C - negative base

Consider the base $b=-\phi$ and the alphabet $\mathcal{A}=\{0,1\}$. Then $\mathcal{I} = [-1, \frac{1}{6}]$. The number $\frac{1}{2} \in \mathcal{I}$ has representations:

Representation condition C		representation of $\frac{1}{2}$
lto- Sadahiro	take maximal digit in $\mathcal{I}_{IS} = [-rac{1}{\phi},rac{1}{\phi^2})$	$\left(\frac{1}{2}\right)_{IS} = \bullet (100)^{\omega} = \bullet 100100100\ldots$
Greedy	take alt. maximal	$(\frac{1}{2})_G = \bullet 100(111000)^\omega = \bullet 100111000\dots$
Lazy	taky alt. minimal	$(\frac{1}{2})_L = \bullet (111000)^\omega = \bullet 111000111\dots$

Minimal polynomial of ϕ is $x^2 - x = 1$, hence $110 \leftrightarrow 001$.

Extremal representations in a positive base

Representations in a negative base I

Representations in a negative base II

Representations in a negative base III

Greedy "transformation":

- \bullet use T_0 on odd positions
- ullet use T_1 on even positions

Representations in a negative base III

Greedy "transformation":

- use T_0 on odd positions
- ullet use \mathcal{T}_1 on even positions

Representations in a negative base III

Greedy "transformation":

- use T_0 on odd positions
- ullet use T_1 on even positions

Lazy "transformation":

- use T_1 on odd positions
- use T_0 on even positions

Properties of $-\phi$ representations

Ito-Sadahiro:

- the attractor $\mathcal{I}_{IS} = [-\phi^{-1}, \phi^{-2})$ satisfies $\frac{1}{-\phi}\mathcal{I}_{IS} \subseteq \mathcal{I}_{IS}$;
- not lazy nor greedy for any $x \in \mathcal{I}_{IS}$;
- $(0)_{15} = \bullet 0^{\omega} = \bullet 0000000000 \cdots$

Greedy representations:

- the attractor $\mathcal{I}_G = [-1,0)$ is whole negative and $0 \notin \mathcal{I}_G$:
- which means that the representations are not continuous in 0;
- \bullet (0)_G = \bullet 01(10)^{ω} = \bullet 0110101010 · · ·

Lazy representations:

- the attractor $\mathcal{I}_I = (-\phi^{-2}, \phi^{-1}]$ contains 0 as an interior point;
- but $\frac{1}{-\phi}\mathcal{I}_L \nsubseteq \mathcal{I}_L$;
- \bullet (0), $= \bullet 11(01)^{\omega} = \bullet 1101010101\cdots$

Connection between bases $-\phi$ and ϕ^2 I

Besides a base $-\phi$ and an alphabet $\mathcal{A}:=\{0,1\}$, consider a base ϕ^2 and an alphabet $\mathcal{B}:=\{-\phi,-\phi+1,0,1\}$.

Let us define a substituion $\psi:\mathcal{B}^{\mathbb{N}}\mapsto (\mathcal{A}\times\mathcal{A})^{\mathbb{N}}$ as

$$\psi(-\phi) = 10, \quad \psi(-\phi + 1) = 11, \quad \psi(0) = 00, \quad \psi(1) = 01.$$

Connection between bases $-\phi$ and ϕ^2 I

Besides a base $-\phi$ and an alphabet $\mathcal{A}:=\{0,1\}$, consider a base ϕ^2 and an alphabet $\mathcal{B} := \{-\phi, -\phi + 1, 0, 1\}$.

Let us define a substituion $\psi: \mathcal{B}^{\mathbb{N}} \mapsto (\mathcal{A} \times \mathcal{A})^{\mathbb{N}}$ as

$$\psi(-\phi) = 10, \quad \psi(-\phi + 1) = 11, \quad \psi(0) = 00, \quad \psi(1) = 01.$$

We see that

$$\frac{-\phi}{\phi^2} = \frac{1}{(-\phi)^1} + \frac{0}{(-\phi)^2}, \qquad \frac{-\phi+1}{\phi^2} = \frac{1}{(-\phi)^1} + \frac{1}{(-\phi)^2}$$
 etc.

Connection between bases $-\phi$ and ϕ^2 I

Besides a base $-\phi$ and an alphabet $\mathcal{A}:=\{0,1\}$, consider a base ϕ^2 and an alphabet $\mathcal{B} := \{-\phi, -\phi + 1, 0, 1\}$.

Let us define a substituion $\psi: \mathcal{B}^{\mathbb{N}} \mapsto (\mathcal{A} \times \mathcal{A})^{\mathbb{N}}$ as

$$\psi(-\phi) = 10, \quad \psi(-\phi + 1) = 11, \quad \psi(0) = 00, \quad \psi(1) = 01.$$

We see that

$$\frac{-\phi}{\phi^2} = \frac{1}{(-\phi)^1} + \frac{0}{(-\phi)^2}, \qquad \frac{-\phi+1}{\phi^2} = \frac{1}{(-\phi)^1} + \frac{1}{(-\phi)^2}$$
 etc.

Proposition

Let $\mathbf{b} = b_1 b_2 b_3$ be a representation of $x \in \mathbb{R}$ in the base ϕ^2 with the alphabet B. Then

$$\psi(\mathbf{b}) = \psi(b_1)\psi(b_2)\psi(b_3)\cdots$$

is a representation of the same x in the base $-\phi$ with the alphabet A.

Connection between bases $-\phi$ and ϕ^2 II

Conclusions and remarks

- We show how to obtain lazy and greedy representations in negative bases.
- ② The results can be generalized for any negative base $\beta < -1$.
- The negative bases can be studied through positive bases using non-integer alphabets.
- $\textbf{ This is true as well for complex bases } \beta \text{ with } |\beta| > 1 \text{ as far as arg } \beta \in \pi \mathbb{Q}.$

Most important references

- HeMaPe. Greedy and lazy representations of numbers in the negative golden ratio base. Preprint 2011.
- Shunji Ito and Taizo Sadahiro. Beta-expansions with negative bases. Integers, 9:A22, 239–259, 2009.
- Alfréd Rényi. Representations for real numbers and their ergodic properties. Acta Math. Acad. Sci. Hungar, 8:477–493, 1957.