Parallel Addition in Non-standard Numeration Systems

Milena Svobodová, Edita Pelantová

TIGR KM FJFI ČVUT

November 9, 2010

- We work with positional numeration systems, given by
 - ▶ base β , $\beta \in \mathbb{C}$, $|\beta| > 1$,
 - finite set of integer digits called alphabet $A \subset \mathbb{Z}$, and
 - we limit ourselves to base β being an algebraic number (but NOT necessarily algebraic integer!); namely β is a root of an equation

$$b_d \beta^d + b_{d-1} \beta^{d-1} + \ldots + b_1 \beta^1 + b_0 \beta^0 = 0$$

with $d \in \mathbb{N}$, and integer coefficients $b_d, b_{d-1}, \ldots, b_1, b_0 \in \mathbb{Z}$ (wherein $b_d \neq 0$ does NOT have to be equal to 1).

- We work with positional numeration systems, given by
 - ▶ base β , $\beta \in \mathbb{C}$, $|\beta| > 1$,
 - finite set of integer digits called alphabet $A \subset \mathbb{Z}$, and
 - we limit ourselves to base β being an algebraic number (but NOT necessarily algebraic integer!); namely β is a root of an equation

$$b_d \beta^d + b_{d-1} \beta^{d-1} + \ldots + b_1 \beta^1 + b_0 \beta^0 = 0$$

with $d \in \mathbb{N}$, and integer coefficients $b_d, b_{d-1}, \ldots, b_1, b_0 \in \mathbb{Z}$ (wherein $b_d \neq 0$ does NOT have to be equal to 1).

- In such numeration system, we work with so-called β -representations of real or complex numbers in the form
 - $ightharpoonup x = (x_n x_{n-1} \dots x_{m+1} x_m) = (x_j)_{j=m}^n \text{ for } x \in \mathbb{C} \text{ or } x \in \mathbb{R},$
 - ▶ meaning that $\mathbf{x} = \sum_{i=m}^{n} x_i \beta^i$, with $n \in \mathbb{Z}$ and $m \leq n$,
 - ▶ where $m \in \mathbb{Z}$, or $m = -\infty$

- We work with positional numeration systems, given by
 - ▶ base β , $\beta \in \mathbb{C}$, $|\beta| > 1$,
 - finite set of integer digits called alphabet $A \subset \mathbb{Z}$, and
 - we limit ourselves to base β being an algebraic number (but NOT necessarily algebraic integer!); namely β is a root of an equation

$$b_d \beta^d + b_{d-1} \beta^{d-1} + \ldots + b_1 \beta^1 + b_0 \beta^0 = 0$$

with $d \in \mathbb{N}$, and integer coefficients $b_d, b_{d-1}, \ldots, b_1, b_0 \in \mathbb{Z}$ (wherein $b_d \neq 0$ does NOT have to be equal to 1).

- In such numeration system, we work with so-called β -representations of real or complex numbers in the form
 - $ightharpoonup x = (x_n x_{n-1} \dots x_{m+1} x_m) = (x_j)_{j=m}^n \text{ for } x \in \mathbb{C} \text{ or } x \in \mathbb{R},$
 - ▶ meaning that $x = \sum_{j=m}^{n} x_j \beta^j$, with $n \in \mathbb{Z}$ and $m \leq n$,
 - where $m \in \mathbb{Z}$, or $m = -\infty$
- Generally, these numeration systems can be redundant (i.e. allowing more than one β -representation for the same number x), or non-redundant (i.e. the opposite).

• Our aim is to perform addition of two numbers in this numeration system 'in parallel'; which, in terminology of theoretical informatics, means that addition would be a local function.

 Our aim is to perform addition of two numbers in this numeration system 'in parallel'; which, in terminology of theoretical informatics, means that addition would be a local function.

Definition

Let \mathcal{A},\mathcal{B} be two alphabets, let $\mathcal{A}^{\mathbb{Z}},\mathcal{B}^{\mathbb{Z}}$ be the sets of all bi-infinite words on these two alphabets. Function $\varphi:\mathcal{A}^{\mathbb{Z}}\to\mathcal{B}^{\mathbb{Z}}$ is said to be local with memory r and anticipation t if there exist non-negative integers r,t and a function $\phi:\mathcal{A}^p\to\mathcal{B}$ with p=r+t+1, such that if $u=(u_j)_{j\in\mathbb{Z}}\in\mathcal{A}^{\mathbb{Z}}$ and $v=(v_j)_{j\in\mathbb{Z}}\in\mathcal{B}^{\mathbb{Z}}$, then $v=\varphi(u)$ if and only if for every $j\in\mathbb{Z}$ there is $v_j=\phi(u_{j+t}\ldots u_{j}\ldots u_{j-r})$.

• Our aim is to perform addition of two numbers in this numeration system 'in parallel'; which, in terminology of theoretical informatics, means that addition would be a local function.

Definition

Let \mathcal{A},\mathcal{B} be two alphabets, let $\mathcal{A}^{\mathbb{Z}},\mathcal{B}^{\mathbb{Z}}$ be the sets of all bi-infinite words on these two alphabets. Function $\varphi:\mathcal{A}^{\mathbb{Z}}\to\mathcal{B}^{\mathbb{Z}}$ is said to be local with memory r and anticipation t if there exist non-negative integers r,t and a function $\phi:\mathcal{A}^p\to\mathcal{B}$ with p=r+t+1, such that if $u=(u_j)_{j\in\mathbb{Z}}\in\mathcal{A}^{\mathbb{Z}}$ and $v=(v_j)_{j\in\mathbb{Z}}\in\mathcal{B}^{\mathbb{Z}}$, then $v=\varphi(u)$ if and only if for every $j\in\mathbb{Z}$ there is $v_j=\phi(u_{j+t}\dots u_j\dots u_{j-r})$.

We then say that φ is (r, t)-local or p-local, and that the image of u by φ is obtained through a 'sliding window' of length p.

 Our aim is to perform addition of two numbers in this numeration system 'in parallel'; which, in terminology of theoretical informatics, means that addition would be a local function.

Definition

Let \mathcal{A},\mathcal{B} be two alphabets, let $\mathcal{A}^{\mathbb{Z}},\mathcal{B}^{\mathbb{Z}}$ be the sets of all bi-infinite words on these two alphabets. Function $\varphi:\mathcal{A}^{\mathbb{Z}}\to\mathcal{B}^{\mathbb{Z}}$ is said to be local with memory r and anticipation t if there exist non-negative integers r,t and a function $\phi:\mathcal{A}^p\to\mathcal{B}$ with p=r+t+1, such that if $u=(u_j)_{j\in\mathbb{Z}}\in\mathcal{A}^{\mathbb{Z}}$ and $v=(v_j)_{j\in\mathbb{Z}}\in\mathcal{B}^{\mathbb{Z}}$, then $v=\varphi(u)$ if and only if for every $j\in\mathbb{Z}$ there is $v_j=\phi(u_{j+t}\dots u_j\dots u_{j-r})$.

We then say that φ is (r, t)-local or p-local, and that the image of u by φ is obtained through a 'sliding window' of length p.

 Parallel addition is not possible on non-redundant numeration systems; therefore, from now onwards, we are going to work with redundant numeration systems.

• In our case, in order to be able to do parallel addition in a numeration system with base β :

- In our case, in order to be able to do parallel addition in a numeration system with base β :
 - \triangleright we need to find a convenient alphabet \mathcal{A} and

- In our case, in order to be able to do parallel addition in a numeration system with base β :
 - ightharpoonup we need to find a convenient alphabet ${\cal A}$ and
 - ▶ find a convenient function $\phi: (\mathcal{A} + \mathcal{A})^p \to \mathcal{A}$, with suitable non-negative integers r, t, p = r + t + 1, allowing to

- In our case, in order to be able to do parallel addition in a numeration system with base β :
 - ightharpoonup we need to find a convenient alphabet ${\cal A}$ and
 - ▶ find a convenient function $\phi: (A + A)^p \to A$, with suitable non-negative integers r, t, p = r + t + 1, allowing to
 - express addition of two numbers in this numeration system in the form of an (r, t)-local function $\varphi : (\mathcal{A} + \mathcal{A})^{\mathbb{Z}} \to \mathcal{A}^{\mathbb{Z}}$, wherein

- In our case, in order to be able to do parallel addition in a numeration system with base β :
 - ightharpoonup we need to find a convenient alphabet ${\cal A}$ and
 - ▶ find a convenient function $\phi: (A + A)^p \to A$, with suitable non-negative integers r, t, p = r + t + 1, allowing to
 - express addition of two numbers in this numeration system in the form of an (r, t)-local function $\varphi : (\mathcal{A} + \mathcal{A})^{\mathbb{Z}} \to \mathcal{A}^{\mathbb{Z}}$, wherein
 - ▶ starting from $x, y \in A^{\mathbb{Z}}$, $x = \sum_{i} x_{j} \beta^{j}$, $y = \sum_{i} y_{j} \beta^{j}$, $x_{j}, y_{j} \in A$,

- In our case, in order to be able to do parallel addition in a numeration system with base β :
 - ightharpoonup we need to find a convenient alphabet ${\cal A}$ and
 - ▶ find a convenient function $\phi: (A + A)^p \to A$, with suitable non-negative integers r, t, p = r + t + 1, allowing to
 - express addition of two numbers in this numeration system in the form of an (r,t)-local function $\varphi: (\mathcal{A}+\mathcal{A})^{\mathbb{Z}} \to \mathcal{A}^{\mathbb{Z}}$, wherein
 - ▶ starting from $x, y \in A^{\mathbb{Z}}$, $x = \sum_{i} x_{j} \beta^{j}$, $y = \sum_{i} y_{j} \beta^{j}$, $x_{j}, y_{j} \in A$,
 - we continue via an interim summation $w = \sum_{j}^{j} w_{j} \beta^{j} = \sum_{j} (x_{j} + y_{j}) \beta^{j}$, $w_{j} \in (A + A)$,

- In our case, in order to be able to do parallel addition in a numeration system with base β :
 - ightharpoonup we need to find a convenient alphabet ${\cal A}$ and
 - ▶ find a convenient function $\phi: (A + A)^p \to A$, with suitable non-negative integers r, t, p = r + t + 1, allowing to
 - express addition of two numbers in this numeration system in the form of an (r,t)-local function $\varphi: (\mathcal{A}+\mathcal{A})^{\mathbb{Z}} \to \mathcal{A}^{\mathbb{Z}}$, wherein
 - ▶ starting from $x, y \in A^{\mathbb{Z}}$, $x = \sum_{i} x_{j} \beta^{j}$, $y = \sum_{i} y_{j} \beta^{j}$, $x_{j}, y_{j} \in A$,
 - we continue via an interim summation $w = \sum_j w_j \beta^j = \sum_j (x_j + y_j) \beta^j$, $w_j \in (A + A)$,
 - upon which we apply the local function $\varphi: (\mathcal{A} + \mathcal{A})^{\mathbb{Z}} \to \mathcal{A}^{\mathbb{Z}}$ as follows: $z = \varphi(w) = \sum_{j} z_{j} \beta^{j}$, where $z_{j} = \phi(w_{j+t}, \ldots, w_{j}, \ldots, w_{j-r}) \in \mathcal{A}$ for any $i \in \mathbb{Z}$

- In our case, in order to be able to do parallel addition in a numeration system with base β :
 - \blacktriangleright we need to find a convenient alphabet ${\cal A}$ and
 - ▶ find a convenient function $\phi: (A + A)^p \to A$, with suitable non-negative integers r, t, p = r + t + 1, allowing to
 - express addition of two numbers in this numeration system in the form of an (r, t)-local function $\varphi : (\mathcal{A} + \mathcal{A})^{\mathbb{Z}} \to \mathcal{A}^{\mathbb{Z}}$, wherein
 - ▶ starting from $x, y \in A^{\mathbb{Z}}$, $x = \sum_{i} x_{j} \beta^{j}$, $y = \sum_{i} y_{j} \beta^{j}$, $x_{j}, y_{j} \in A$,
 - we continue via an interim summation $w = \sum_j w_j \beta^j = \sum_j (x_j + y_j) \beta^j$, $w_j \in (A + A)$,
 - upon which we apply the local function $\varphi: (\mathcal{A} + \mathcal{A})^{\mathbb{Z}} \to \mathcal{A}^{\mathbb{Z}}$ as follows: $z = \varphi(w) = \sum_{j} z_{j} \beta^{j}$, where $z_{j} = \phi(w_{j+t}, \dots, w_{j}, \dots, w_{j-r}) \in \mathcal{A}$ for any $j \in \mathbb{Z}$
- Note: In all the algorithms described further, our alphabet has the form $A = \{-a, \dots, 0, \dots, +a\}$ i.e. is symmetric with respect to zero; therefore, having addition as a local function, we have at the same time also deduction as a local function.

A.Avizienis (1961)

A.Avizienis (1961)

• Algorithm for parallel addition in numeration system with positive integer base $\beta = b \in \mathbb{N}$, $b \geq 3$, and alphabet $A = \{-a, \ldots, 0, \ldots, +a\}$, where $\frac{b}{2} < a \leq b-1$

A.Avizienis (1961)

- Algorithm for parallel addition in numeration system with positive integer base $\beta = b \in \mathbb{N}$, $b \ge 3$, and alphabet $A = \{-a, \dots, 0, \dots, +a\}$, where $\frac{b}{2} < a \le b-1$
- The algorithm is a 2-local function with memory 1 and anticipation 0, i.e. (1,0)-local function

A.Avizienis (1961)

- Algorithm for parallel addition in numeration system with positive integer base $\beta = b \in \mathbb{N}$, $b \ge 3$, and alphabet $A = \{-a, \dots, 0, \dots, +a\}$, where $\frac{b}{2} < a \le b-1$
- The algorithm is a 2-local function with memory 1 and anticipation 0, i.e. (1,0)-local function
- The minimal choice of a here is $a = \lceil \frac{b+1}{2} \rceil$, and so the smallest alphabet we can obtain is $\mathcal{A} = \{-\lceil \frac{b+1}{2} \rceil, \dots, 0, \dots, +\lceil \frac{b+1}{2} \rceil\}$

A.Avizienis (1961)

- Algorithm for parallel addition in numeration system with positive integer base $\beta = b \in \mathbb{N}$, $b \ge 3$, and alphabet $A = \{-a, \dots, 0, \dots, +a\}$, where $\frac{b}{2} < a \le b-1$
- The algorithm is a 2-local function with memory 1 and anticipation 0,
 i.e. (1,0)-local function
- The minimal choice of a here is $a = \lceil \frac{b+1}{2} \rceil$, and so the smallest alphabet we can obtain is $\mathcal{A} = \{-\lceil \frac{b+1}{2} \rceil, \dots, 0, \dots, +\lceil \frac{b+1}{2} \rceil\}$

C.Y.Chow, J.E.Robertson (1978)

A.Avizienis (1961)

- Algorithm for parallel addition in numeration system with positive integer base $\beta = b \in \mathbb{N}$, $b \ge 3$, and alphabet $A = \{-a, \dots, 0, \dots, +a\}$, where $\frac{b}{2} < a \le b-1$
- The algorithm is a 2-local function with memory 1 and anticipation 0, i.e. (1,0)-local function
- The minimal choice of a here is $a = \lceil \frac{b+1}{2} \rceil$, and so the smallest alphabet we can obtain is $\mathcal{A} = \{-\lceil \frac{b+1}{2} \rceil, \dots, 0, \dots, +\lceil \frac{b+1}{2} \rceil\}$

C.Y.Chow, J.E.Robertson (1978)

• Algorithm for parallel addition in numeration system with even base $\beta = b \in \mathbb{N}$, $b \ge 2$, and alphabet $\mathcal{A} = \{-\frac{b}{2}, \dots, 0, \dots, +\frac{b}{2}\}$

A.Avizienis (1961)

- Algorithm for parallel addition in numeration system with positive integer base $\beta = b \in \mathbb{N}$, $b \ge 3$, and alphabet $A = \{-a, \dots, 0, \dots, +a\}$, where $\frac{b}{2} < a \le b-1$
- The algorithm is a 2-local function with memory 1 and anticipation 0,
 i.e. (1,0)-local function
- The minimal choice of a here is $a = \lceil \frac{b+1}{2} \rceil$, and so the smallest alphabet we can obtain is $\mathcal{A} = \{-\lceil \frac{b+1}{2} \rceil, \dots, 0, \dots, +\lceil \frac{b+1}{2} \rceil\}$

C.Y.Chow, J.E.Robertson (1978)

- Algorithm for parallel addition in numeration system with even base $\beta = b \in \mathbb{N}, \ b \ge 2$, and alphabet $\mathcal{A} = \{-\frac{b}{2}, \dots, 0, \dots, +\frac{b}{2}\}$
- The algorithm is a 3-local function with memory 2 and anticipation 0, i.e. (2,0)-local function

Comparing the algorithms of Avizienis versus Chow & Robertson:

Comparing the algorithms of Avizienis versus Chow & Robertson:

• The 'sliding window' with Chow & Robertson (p=3) is longer than with Avizienis (p=2); on the other hand,

Comparing the algorithms of Avizienis versus Chow & Robertson:

- The 'sliding window' with Chow & Robertson (p = 3) is longer than with Avizienis (p = 2); on the other hand,
- For even bases b, Chow & Robertson works on smaller alphabet $\left(a=\frac{b}{2}\right)$ than Avizienis $\left(a=\frac{b}{2}+1\right)$; and, on top of that,

Comparing the algorithms of Avizienis versus Chow & Robertson:

- The 'sliding window' with Chow & Robertson (p = 3) is longer than with Avizienis (p = 2); on the other hand,
- For even bases b, Chow & Robertson works on smaller alphabet $\left(a=\frac{b}{2}\right)$ than Avizienis $\left(a=\frac{b}{2}+1\right)$; and, on top of that,
- Chow & Robertson works also for b = 2, while Avizienis does not

Comparing the algorithms of Avizienis versus Chow & Robertson:

- The 'sliding window' with Chow & Robertson (p = 3) is longer than with Avizienis (p = 2); on the other hand,
- For even bases b, Chow & Robertson works on smaller alphabet $\left(a=\frac{b}{2}\right)$ than Avizienis $\left(a=\frac{b}{2}+1\right)$; and, on top of that,
- Chow & Robertson works also for b = 2, while Avizienis does not

Overview of working of Chow & Robertson versus Avizienis algorithms on first few integer bases:

base	3-local algorithm	2-local algorithm
$b\in\mathbb{N}$	of Chow & Robertson	of Avizienis
b = 2	$\mathcal{A} = \{-1,0,+1\}$	not working
b = 3	not working	$\mathcal{A} = \{-2, \dots, +2\}$
b = 4	$\mathcal{A} = \{-2, \dots, +2\}$	$\mathcal{A} = \{-3, \dots, +3\}$
b = 5	not working	$\mathcal{A} = \{-3, \dots, +3\}$
b = 6	$\mathcal{A} = \{-3, \dots, +3\}$	$\mathcal{A} = \{-4, \dots, +4\}$

The algorithms for parallel addition given by Chow & Robertson or Avizienis only act on numeration systems with positive integer base $\beta=b\in\mathbb{N}$; and still with further restrictions (Avizienis only for $b\geq 3$, Chow & Robertson only for b even).

The algorithms for parallel addition given by Chow & Robertson or Avizienis only act on numeration systems with positive integer base $\beta=b\in\mathbb{N}$; and still with further restrictions (Avizienis only for $b\geq 3$, Chow & Robertson only for b even).

Our new results:

The algorithms for parallel addition given by Chow & Robertson or Avizienis only act on numeration systems with positive integer base $\beta=b\in\mathbb{N}$; and still with further restrictions (Avizienis only for $b\geq 3$, Chow & Robertson only for b even).

Our new results:

• We describe two new algorithms for parallel addition in numeration systems with base $\beta \in \mathbb{C}$, $|\beta| > 1$ being an algebraic number, and with integer alphabet $\mathcal{A} = \{-a, \dots, 0, \dots, +a\}$.

What New Results Do We Bring?

The algorithms for parallel addition given by Chow & Robertson or Avizienis only act on numeration systems with positive integer base $\beta=b\in\mathbb{N}$; and still with further restrictions (Avizienis only for $b\geq 3$, Chow & Robertson only for b even).

Our new results:

- We describe two new algorithms for parallel addition in numeration systems with base $\beta \in \mathbb{C}$, $|\beta| > 1$ being an algebraic number, and with integer alphabet $\mathcal{A} = \{-a, \dots, 0, \dots, +a\}$.
- Note that the base β does NOT need to be algebraic integer, but just an algebraic number.

What New Results Do We Bring?

The algorithms for parallel addition given by Chow & Robertson or Avizienis only act on numeration systems with positive integer base $\beta=b\in\mathbb{N}$; and still with further restrictions (Avizienis only for $b\geq 3$, Chow & Robertson only for b even).

Our new results:

- We describe two new algorithms for parallel addition in numeration systems with base $\beta \in \mathbb{C}$, $|\beta| > 1$ being an algebraic number, and with integer alphabet $\mathcal{A} = \{-a, \dots, 0, \dots, +a\}$.
- Note that the base β does NOT need to be algebraic integer, but just an algebraic number.
- Both the algorithms do NOT work for all algebraic numbers β , but each of them does work for quite a large class of algebraic numbers β .

What New Results Do We Bring?

The algorithms for parallel addition given by Chow & Robertson or Avizienis only act on numeration systems with positive integer base $\beta=b\in\mathbb{N}$; and still with further restrictions (Avizienis only for $b\geq 3$, Chow & Robertson only for b even).

Our new results:

- We describe two new algorithms for parallel addition in numeration systems with base $\beta \in \mathbb{C}$, $|\beta| > 1$ being an algebraic number, and with integer alphabet $\mathcal{A} = \{-a, \dots, 0, \dots, +a\}$.
- Note that the base β does NOT need to be algebraic integer, but just an algebraic number.
- Both the algorithms do NOT work for all algebraic numbers β , but each of them does work for quite a large class of algebraic numbers β .
- The applicability / non-applicability of each of the two algorithms for a particular base β depends on specific properties of β , as described further.

Definition

An algebraic number $\beta \in \mathbb{C}$, $|\beta| > 1$ is said to have a 'strong rewriting rule' if there exist non-negative integers $h, k \in \mathbb{N}$, and a set of integers $b_k, b_{k-1}, \ldots, b_1, b_0, b_{-1}, \ldots, b_{-h} \in \mathbb{Z}$ such that

$$b_k \beta^k + b_{k-1} \beta^{k-1} + \ldots + b_1 \beta^1 + b_0 + b_{-1} \beta^{-1} + \ldots + b_{-h} \beta^{-h} = 0$$
 and $b_0 > 2 \sum_{i=-h}^k \sum_{j \neq 0}^k |b_j|$.

Definition

An algebraic number $\beta \in \mathbb{C}$, $|\beta| > 1$ is said to have a 'strong rewriting rule' if there exist non-negative integers $h, k \in \mathbb{N}$, and a set of integers $b_k, b_{k-1}, \ldots, b_1, b_0, b_{-1}, \ldots, b_{-h} \in \mathbb{Z}$ such that

$$b_k \beta^k + b_{k-1} \beta^{k-1} + \ldots + b_1 \beta^1 + b_0 + b_{-1} \beta^{-1} + \ldots + b_{-h} \beta^{-h} = 0$$

and $b_0 > 2 \sum_{j=-h, j \neq 0}^k |b_j|$.

Theorem

Let $\beta \in \mathbb{C}$, $|\beta| > 1$ have a 'strong rewriting rule', wherein B, M denote $B = b_0$ and $M = \sum_{j=-h, j\neq 0}^k |b_j|$, and let p = k + h + 1.

Definition

An algebraic number $\beta \in \mathbb{C}$, $|\beta| > 1$ is said to have a 'strong rewriting rule' if there exist non-negative integers $h, k \in \mathbb{N}$, and a set of integers $b_k, b_{k-1}, \ldots, b_1, b_0, b_{-1}, \ldots, b_{-h} \in \mathbb{Z}$ such that

$$b_k \beta^k + b_{k-1} \beta^{k-1} + \ldots + b_1 \beta^1 + b_0 + b_{-1} \beta^{-1} + \ldots + b_{-h} \beta^{-h} = 0$$
 and $b_0 > 2 \sum_{j=-h, j \neq 0}^k |b_j|$.

Theorem

Let $\beta \in \mathbb{C}$, $|\beta| > 1$ have a 'strong rewriting rule', wherein B, M denote $B = b_0$ and $M = \sum_{j=-h, j \neq 0}^k |b_j|$, and let p = k + h + 1.

Then addition in numeration system with base β can be realized as a p-local function with memory k and anticipation h, in alphabet $\mathcal{A} = \{-a, \dots, 0, \dots, +a\}$, where $a = \lceil \frac{B-1}{2} \rceil + \lceil \frac{B-1}{2(B-2M)} \rceil M$.

This (k, h)-local function of addition is described in Algorithm I,

This (k, h)-local function of addition is described in Algorithm I, with parameters:

This (k, h)-local function of addition is described in Algorithm I,

with parameters:

• Notation: a = a' + cM, where $a' = \lceil \frac{B-1}{2} \rceil$, $c = \lceil \frac{B-1}{2(B-2M)} \rceil$; alphabet $\mathcal{A} = \{-a, \ldots, 0, \ldots, +a\}$, inner alphabet $\mathcal{A}' = \{-a', \ldots, 0, \ldots, +a'\}$; integers m < n

This (k, h)-local function of addition is described in Algorithm I,

with parameters:

- Notation: a = a' + cM, where $a' = \lceil \frac{B-1}{2} \rceil$, $c = \lceil \frac{B-1}{2(B-2M)} \rceil$; alphabet $\mathcal{A} = \{-a, \ldots, 0, \ldots, +a\}$, inner alphabet $\mathcal{A}' = \{-a', \ldots, 0, \ldots, +a'\}$; integers $m \leq n$
- Input: $x = \sum_{i=m}^{n} x_i \beta^j$ and $y = \sum_{i=m}^{n} y_i \beta^j$; digits $x_j, y_j \in \mathcal{A}$

This (k, h)-local function of addition is described in Algorithm I,

with parameters:

- Notation: a = a' + cM, where $a' = \lceil \frac{B-1}{2} \rceil$, $c = \lceil \frac{B-1}{2(B-2M)} \rceil$; alphabet $\mathcal{A} = \{-a, \ldots, 0, \ldots, +a\}$, inner alphabet $\mathcal{A}' = \{-a', \ldots, 0, \ldots, +a'\}$; integers $m \leq n$
- Input: $x = \sum_{j=m}^{n} x_j \beta^j$ and $y = \sum_{j=m}^{n} y_j \beta^j$; digits $x_j, y_j \in \mathcal{A}$
- Output: $z = x + y = \sum_{i=m-h}^{n+k} z_i \beta^i$; digits $z_i \in \mathcal{A}$

This (k, h)-local function of addition is described in Algorithm I,

with parameters:

- Notation: a = a' + cM, where $a' = \lceil \frac{B-1}{2} \rceil$, $c = \lceil \frac{B-1}{2(B-2M)} \rceil$; alphabet $\mathcal{A} = \{-a, \dots, 0, \dots, +a\}$, inner alphabet $\mathcal{A}' = \{-a', \dots, 0, \dots, +a'\}$; integers $m \leq n$
- Input: $x = \sum_{j=m}^{n} x_j \beta^j$ and $y = \sum_{j=m}^{n} y_j \beta^j$; digits $x_j, y_j \in \mathcal{A}$
- Output: $z = x + y = \sum_{j=m-h}^{n+k} z_j \beta^j$; digits $z_j \in \mathcal{A}$

and with steps:

This (k, h)-local function of addition is described in Algorithm I,

with parameters:

- Notation: a = a' + cM, where $a' = \lceil \frac{B-1}{2} \rceil$, $c = \lceil \frac{B-1}{2(B-2M)} \rceil$; alphabet $\mathcal{A} = \{-a, \ldots, 0, \ldots, +a\}$, inner alphabet $\mathcal{A}' = \{-a', \ldots, 0, \ldots, +a'\}$; integers $m \leq n$
- Input: $x = \sum_{j=m}^{n} x_j \beta^j$ and $y = \sum_{j=m}^{n} y_j \beta^j$; digits $x_j, y_j \in \mathcal{A}$
- Output: $z = x + y = \sum_{j=m-h}^{n+k} z_j \beta^j$; digits $z_j \in \mathcal{A}$

and with steps:

• Line 0.: for each j = m, ..., n, put $w_j := x_j + y_j$

This (k, h)-local function of addition is described in Algorithm I,

with parameters:

- Notation: a = a' + cM, where $a' = \lceil \frac{B-1}{2} \rceil$, $c = \lceil \frac{B-1}{2(B-2M)} \rceil$; alphabet $\mathcal{A} = \{-a, \dots, 0, \dots, +a\}$, inner alphabet $\mathcal{A}' = \{-a', \dots, 0, \dots, +a'\}$; integers $m \leq n$
- Input: $x = \sum_{j=m}^{n} x_j \beta^j$ and $y = \sum_{j=m}^{n} y_j \beta^j$; digits $x_j, y_j \in \mathcal{A}$
- Output: $z = x + y = \sum_{j=m-h}^{n+k} z_j \beta^j$; digits $z_j \in \mathcal{A}$

and with steps:

- Line 0.: for each j = m, ..., n, put $w_j := x_j + y_j$
- Line 1.: for each $j=m,\ldots,n$, find $q_j\in\{-c,\ldots,0,\ldots,+c\}$ such that $w_j-q_jB\in\mathcal{A}'$

This (k, h)-local function of addition is described in Algorithm I,

with parameters:

- Notation: a = a' + cM, where $a' = \lceil \frac{B-1}{2} \rceil$, $c = \lceil \frac{B-1}{2(B-2M)} \rceil$; alphabet $\mathcal{A} = \{-a, \ldots, 0, \ldots, +a\}$, inner alphabet $\mathcal{A}' = \{-a', \ldots, 0, \ldots, +a'\}$; integers $m \leq n$
- Input: $x = \sum_{j=m}^{n} x_j \beta^j$ and $y = \sum_{j=m}^{n} y_j \beta^j$; digits $x_j, y_j \in \mathcal{A}$
- Output: $z = x + y = \sum_{j=m-h}^{n+k} z_j \beta^j$; digits $z_j \in \mathcal{A}$

and with steps:

- Line 0.: for each j = m, ..., n, put $w_j := x_j + y_j$
- Line 1.: for each $j=m,\ldots,n$, find $q_j\in\{-c,\ldots,0,\ldots,+c\}$ such that $w_j-q_jB\in\mathcal{A}'$
- Line 2.: for each $j = m h, \ldots, n + k$, put $z_j := w_j \sum_{i=-h}^k q_{j-i}b_i$

• Obviously, since $x_j, y_j \in \mathcal{A} = \{-a, \dots, 0, \dots, +a\}$, by application of Line 0., we obtain $w_i = x_i + y_i \in \mathcal{A} + \mathcal{A} = \{-2a, \dots, 0, \dots, +2a\}$.

- Obviously, since $x_j, y_j \in \mathcal{A} = \{-a, \dots, 0, \dots, +a\}$, by application of Line 0., we obtain $w_i = x_i + y_i \in \mathcal{A} + \mathcal{A} = \{-2a, \dots, 0, \dots, +2a\}$.
- The steps listed in Lines 1.+2. in fact describe how to deduct a convenient q_j -multiple of the 'strong rewriting rule' on the j-th position of the β -representation $(w_j)_{j=m}^n$:

- Obviously, since $x_j, y_j \in \mathcal{A} = \{-a, \dots, 0, \dots, +a\}$, by application of Line 0., we obtain $w_i = x_i + y_i \in \mathcal{A} + \mathcal{A} = \{-2a, \dots, 0, \dots, +2a\}$.
- The steps listed in Lines 1.+2. in fact describe how to deduct a convenient q_j -multiple of the 'strong rewriting rule' on the j-th position of the β -representation $(w_j)_{j=m}^n$:

$$w_j \in \mathcal{A} + \mathcal{A}$$

- Obviously, since $x_j, y_j \in \mathcal{A} = \{-a, \dots, 0, \dots, +a\}$, by application of Line 0., we obtain $w_i = x_i + y_i \in \mathcal{A} + \mathcal{A} = \{-2a, \dots, 0, \dots, +2a\}$.
- The steps listed in Lines 1.+2. in fact describe how to deduct a convenient q_j -multiple of the 'strong rewriting rule' on the j-th position of the β -representation $(w_j)_{j=m}^n$:

$$w_j \in \mathcal{A} + \mathcal{A}$$

$$\underline{-2a, \ldots, -a, \ldots, -a', \ldots, 0, \ldots, +a', \ldots, +a, \ldots, +2a}$$

- Obviously, since $x_j, y_j \in \mathcal{A} = \{-a, \dots, 0, \dots, +a\}$, by application of Line 0., we obtain $w_j = x_j + y_j \in \mathcal{A} + \mathcal{A} = \{-2a, \dots, 0, \dots, +2a\}$.
- The steps listed in Lines 1.+2. in fact describe how to deduct a convenient q_j -multiple of the 'strong rewriting rule' on the j-th position of the β -representation $(w_j)_{j=m}^n$:

$$w_j \in \mathcal{A} + \mathcal{A}$$

$$\underbrace{-2a, \ldots, -a, \ldots, -a', \ldots, 0, \ldots, +a', \ldots, +2a}_{}$$

$$w_j - q_j B \in \mathcal{A}'$$

- Obviously, since $x_j, y_j \in \mathcal{A} = \{-a, \dots, 0, \dots, +a\}$, by application of Line 0., we obtain $w_j = x_j + y_j \in \mathcal{A} + \mathcal{A} = \{-2a, \dots, 0, \dots, +2a\}$.
- The steps listed in Lines 1.+2. in fact describe how to deduct a convenient q_j -multiple of the 'strong rewriting rule' on the j-th position of the β -representation $(w_j)_{j=m}^n$:

$$w_j \in \mathcal{A} + \mathcal{A}$$

$$v_j - q_j B \in \mathcal{A}'$$

$$-2a, \dots, -a', \dots, 0, \dots, +a', \dots, +a, \dots, +2a$$

- Obviously, since $x_j, y_j \in \mathcal{A} = \{-a, \dots, 0, \dots, +a\}$, by application of Line 0., we obtain $w_j = x_j + y_j \in \mathcal{A} + \mathcal{A} = \{-2a, \dots, 0, \dots, +2a\}$.
- The steps listed in Lines 1.+2. in fact describe how to deduct a convenient q_j -multiple of the 'strong rewriting rule' on the j-th position of the β -representation $(w_j)_{j=m}^n$:

$$w_j \in \mathcal{A} + \mathcal{A}$$

$$w_j - q_j B \in \mathcal{A}'$$

$$-\sum_{i=-h}^k \sum_{i \neq i} q_{i-i} b_i$$

$$-\sum_{i=-h}^k \sum_{i \neq j} q_{i-i} b_i$$

- Obviously, since $x_j, y_j \in \mathcal{A} = \{-a, \dots, 0, \dots, +a\}$, by application of Line 0., we obtain $w_i = x_i + y_i \in \mathcal{A} + \mathcal{A} = \{-2a, \dots, 0, \dots, +2a\}$.
- The steps listed in Lines 1.+2. in fact describe how to deduct a convenient q_j -multiple of the 'strong rewriting rule' on the j-th position of the β -representation $(w_j)_{j=m}^n$:

$$w_j \in \mathcal{A} + \mathcal{A}$$

$$v_j - q_j B \in \mathcal{A}'$$

$$-\sum_{i=-h}^k \sum_{j\neq i} q_{j-i} b_i$$

$$-cM$$

$$-cM$$

$$-cM$$

- Obviously, since $x_j, y_j \in \mathcal{A} = \{-a, \dots, 0, \dots, +a\}$, by application of Line 0., we obtain $w_j = x_j + y_j \in \mathcal{A} + \mathcal{A} = \{-2a, \dots, 0, \dots, +2a\}$.
- The steps listed in Lines 1.+2. in fact describe how to deduct a convenient q_j -multiple of the 'strong rewriting rule' on the j-th position of the β -representation $(w_j)_{j=m}^n$:

$$w_j \in \mathcal{A} + \mathcal{A}$$

$$w_j - q_j B \in \mathcal{A}'$$

$$-\sum_{i=-h, i \neq j}^k q_{j-i} b_i$$
 $z_i \in \mathcal{A}$

$$-2a, \dots, -a', \dots, 0, \dots, +a', \dots, +a, \dots, +2a$$

$$-a', \dots, 0, \dots, +a'$$

$$-cM$$

- Obviously, since $x_j, y_j \in \mathcal{A} = \{-a, \dots, 0, \dots, +a\}$, by application of Line 0., we obtain $w_j = x_j + y_j \in \mathcal{A} + \mathcal{A} = \{-2a, \dots, 0, \dots, +2a\}$.
- The steps listed in Lines 1.+2. in fact describe how to deduct a convenient q_j -multiple of the 'strong rewriting rule' on the j-th position of the β -representation $(w_j)_{j=m}^n$:

$$w_{j} \in \mathcal{A} + \mathcal{A}$$

$$w_{j} - q_{j}B \in \mathcal{A}'$$

$$-\sum_{i=-h, i \neq j}^{k} q_{j-i}b_{i}$$

$$z_{j} \in \mathcal{A}$$

$$-2a, \dots, -a', \dots, 0, \dots, +a', \dots, +a, \dots, +2a$$

$$-a', \dots, 0, \dots, +a'$$

$$-cM$$

$$+cM$$

$$-a = -cM - a', \dots, +a' + cM = a$$

- Obviously, since $x_j, y_j \in \mathcal{A} = \{-a, \dots, 0, \dots, +a\}$, by application of Line 0., we obtain $w_j = x_j + y_j \in \mathcal{A} + \mathcal{A} = \{-2a, \dots, 0, \dots, +2a\}$.
- The steps listed in Lines 1.+2. in fact describe how to deduct a convenient q_j -multiple of the 'strong rewriting rule' on the j-th position of the β -representation $(w_j)_{j=m}^n$:

$$w_{j} \in \mathcal{A} + \mathcal{A}$$

$$w_{j} - q_{j}B \in \mathcal{A}'$$

$$-\sum_{i=-h, i \neq j}^{k} q_{j-i}b_{i}$$

$$z_{j} \in \mathcal{A}$$

$$-2a, \dots, -a', \dots, 0, \dots, +a', \dots, +a, \dots, +2a$$

$$-a', \dots, 0, \dots, +a'$$

$$-cM$$

$$+cM$$

$$-a = -cM - a', \dots, +a' + cM = a$$

Parameters $a' = \lceil \frac{B-1}{2} \rceil$, $c = \lceil \frac{B-1}{2(B-2M)} \rceil$, $a = a' + cM = \lceil \frac{B-1}{2} \rceil + \lceil \frac{B-1}{2(B-2M)} \rceil M$ are directly derived from the parameters B and M of the 'strong rewriting rule', as we want them to be as small as possible, and to fulfil the following inequalities:

$$2a' + 1 > B$$
 $a' + cM < a$ $2a - cB < a'$

Example: integer base $\beta = b \in \mathbb{N}$, $b \ge 3$:

• 'strong rewriting rule' $-\beta + b = 0$

- 'strong rewriting rule' $-\beta + b = 0$
- memory k = 1, anticipation h = 0, and so p = 2

- 'strong rewriting rule' $-\beta + b = 0$
- memory k = 1, anticipation h = 0, and so p = 2
- B=b, M=1, c=1, $a'=\lceil \frac{b-1}{2} \rceil$, $a=\lceil \frac{b+1}{2} \rceil$

- 'strong rewriting rule' $-\beta + b = 0$
- memory k = 1, anticipation h = 0, and so p = 2
- B=b, M=1, c=1, $a'=\lceil \frac{b-1}{2} \rceil$, $a=\lceil \frac{b+1}{2} \rceil$
- ... the same result as Avizienis: 2-local, in alphabet $\mathcal{A} = \{-\lceil \frac{b+1}{2} \rceil, \dots, 0, \dots, +\lceil \frac{b+1}{2} \rceil\}$

Example: integer base $\beta = b \in \mathbb{N}$, $b \ge 3$:

- 'strong rewriting rule' $-\beta + b = 0$
- memory k = 1, anticipation h = 0, and so p = 2
- B=b, M=1, c=1, $a'=\lceil \frac{b-1}{2} \rceil$, $a=\lceil \frac{b+1}{2} \rceil$
- ... the same result as Avizienis: 2-local, in alphabet $\mathcal{A} = \{-\lceil \frac{b+1}{2} \rceil, \ldots, 0, \ldots, +\lceil \frac{b+1}{2} \rceil\}$

Example: integer base $\beta = 2$:

Example: integer base $\beta = b \in \mathbb{N}$, $b \ge 3$:

- 'strong rewriting rule' $-\beta + b = 0$
- memory k = 1, anticipation h = 0, and so p = 2
- B=b, M=1, c=1, $a'=\lceil \frac{b-1}{2} \rceil$, $a=\lceil \frac{b+1}{2} \rceil$
- ... the same result as Avizienis: 2-local, in alphabet $\mathcal{A} = \{-\lceil \frac{b+1}{2} \rceil, \ldots, 0, \ldots, +\lceil \frac{b+1}{2} \rceil\}$

Example: integer base $\beta = 2$:

 \bullet $-\beta+2=0$ is NOT 'strong rewriting rule', however,

Example: integer base $\beta = b \in \mathbb{N}$, $b \ge 3$:

- 'strong rewriting rule' $-\beta + b = 0$
- memory k = 1, anticipation h = 0, and so p = 2
- B=b, M=1, c=1, $a'=\lceil \frac{b-1}{2} \rceil$, $a=\lceil \frac{b+1}{2} \rceil$
- ... the same result as Avizienis: 2-local, in alphabet $\mathcal{A} = \{-\lceil \frac{b+1}{2} \rceil, \dots, 0, \dots, +\lceil \frac{b+1}{2} \rceil\}$

- $-\beta + 2 = 0$ is NOT 'strong rewriting rule', however,
- instead, we can use the 'strong rewriting rule' $-\beta^2 + 4 = 0$

Example: integer base $\beta = b \in \mathbb{N}$, $b \ge 3$:

- 'strong rewriting rule' $-\beta + b = 0$
- memory k = 1, anticipation h = 0, and so p = 2
- B=b, M=1, c=1, $a'=\lceil \frac{b-1}{2} \rceil$, $a=\lceil \frac{b+1}{2} \rceil$
- ... the same result as Avizienis: 2-local, in alphabet $\mathcal{A} = \{-\lceil \frac{b+1}{2} \rceil, \ldots, 0, \ldots, +\lceil \frac{b+1}{2} \rceil\}$

- $-\beta + 2 = 0$ is NOT 'strong rewriting rule', however,
- instead, we can use the 'strong rewriting rule' $-\beta^2 + 4 = 0$
- memory k = 2, anticipation h = 0, and so p = 3

Example: integer base $\beta = b \in \mathbb{N}$, $b \ge 3$:

- 'strong rewriting rule' $-\beta + b = 0$
- memory k = 1, anticipation h = 0, and so p = 2
- B=b, M=1, c=1, $a'=\lceil \frac{b-1}{2} \rceil$, $a=\lceil \frac{b+1}{2} \rceil$
- ... the same result as Avizienis: 2-local, in alphabet $\mathcal{A} = \{-\lceil \frac{b+1}{2} \rceil, \dots, 0, \dots, +\lceil \frac{b+1}{2} \rceil\}$

- $-\beta + 2 = 0$ is NOT 'strong rewriting rule', however,
- instead, we can use the 'strong rewriting rule' $-\beta^2 + 4 = 0$
- memory k = 2, anticipation h = 0, and so p = 3
- B = 4, M = 1, c = 1, a' = 2, a = 3

Example: integer base $\beta = b \in \mathbb{N}$, $b \ge 3$:

- 'strong rewriting rule' $-\beta + b = 0$
- memory k = 1, anticipation h = 0, and so p = 2
- B = b, M = 1, c = 1, $a' = \lceil \frac{b-1}{2} \rceil$, $a = \lceil \frac{b+1}{2} \rceil$
- ... the same result as Avizienis: 2-local, in alphabet $\mathcal{A} = \{-\lceil \frac{b+1}{2} \rceil, \ldots, 0, \ldots, +\lceil \frac{b+1}{2} \rceil\}$

- $-\beta + 2 = 0$ is NOT 'strong rewriting rule', however,
- instead, we can use the 'strong rewriting rule' $-\beta^2 + 4 = 0$
- memory k = 2, anticipation h = 0, and so p = 3
- B = 4, M = 1, c = 1, a' = 2, a = 3
- ... this algorithm is 3-local (like Chow & Robertson), but it has bigger alphabet $\mathcal{A} = \{-3, \ldots, 0, \ldots, +3\}$ than Chow & Robertson (where $\mathcal{A} = \{-1, 0, +1\}$)

Example: irrational base $\beta = \tau =$ the Golden Mean:

• au is the bigger of the two roots of equation $au^2= au+1$, but this is NOT 'strong rewriting rule', however,

- τ is the bigger of the two roots of equation $\tau^2 = \tau + 1$, but this is NOT 'strong rewriting rule', however,
- instead, we can use the 'strong rewriting rule' $-\tau^4 + 7 \tau^{-4} = 0$

- τ is the bigger of the two roots of equation $\tau^2 = \tau + 1$, but this is NOT 'strong rewriting rule', however,
- instead, we can use the 'strong rewriting rule' $-\tau^4 + 7 \tau^{-4} = 0$
- memory k = 4, anticipation h = 4, and so p = 9

- τ is the bigger of the two roots of equation $\tau^2 = \tau + 1$, but this is NOT 'strong rewriting rule', however,
- instead, we can use the 'strong rewriting rule' $-\tau^4 + 7 \tau^{-4} = 0$
- memory k = 4, anticipation h = 4, and so p = 9
- B = 7, M = 2, c = 1, a' = 3, a = 5

- au is the bigger of the two roots of equation $au^2 = au + 1$, but this is NOT 'strong rewriting rule', however,
- instead, we can use the 'strong rewriting rule' $-\tau^4 + 7 \tau^{-4} = 0$
- memory k = 4, anticipation h = 4, and so p = 9
- B = 7, M = 2, c = 1, a' = 3, a = 5
- ... we have a 9-local algorithm on alphabet $\mathcal{A} = \{-5, \dots, 0, \dots, +5\}$

Example: irrational base $\beta = \tau =$ the Golden Mean:

- au is the bigger of the two roots of equation $au^2 = au + 1$, but this is NOT 'strong rewriting rule', however,
- instead, we can use the 'strong rewriting rule' $-\tau^4 + 7 \tau^{-4} = 0$
- memory k = 4, anticipation h = 4, and so p = 9
- B = 7, M = 2, c = 1, a' = 3, a = 5
- ullet ... we have a 9-local algorithm on alphabet $\mathcal{A}=\{-5,\ldots,0,\ldots,+5\}$

Example: irrational base $\beta = \tau =$ the Golden Mean:

- au is the bigger of the two roots of equation $au^2 = au + 1$, but this is NOT 'strong rewriting rule', however,
- instead, we can use the 'strong rewriting rule' $-\tau^4 + 7 \tau^{-4} = 0$
- memory k = 4, anticipation h = 4, and so p = 9
- B = 7, M = 2, c = 1, a' = 3, a = 5
- ullet ... we have a 9-local algorithm on alphabet $\mathcal{A} = \{-5, \ldots, 0, \ldots, +5\}$

Example: complex base $\beta = -1 + i$:

• 'strong rewriting rule' $\beta^4 + 4 = 0$

Example: irrational base $\beta = \tau =$ the Golden Mean:

- au is the bigger of the two roots of equation $au^2 = au + 1$, but this is NOT 'strong rewriting rule', however,
- instead, we can use the 'strong rewriting rule' $-\tau^4 + 7 \tau^{-4} = 0$
- memory k = 4, anticipation h = 4, and so p = 9
- B = 7, M = 2, c = 1, a' = 3, a = 5
- ullet ... we have a 9-local algorithm on alphabet $\mathcal{A}=\{-5,\ldots,0,\ldots,+5\}$

- 'strong rewriting rule' $\beta^4 + 4 = 0$
- memory k = 4, anticipation h = 0, and so p = 5

Example: irrational base $\beta = \tau =$ the Golden Mean:

- au is the bigger of the two roots of equation $au^2 = au + 1$, but this is NOT 'strong rewriting rule', however,
- instead, we can use the 'strong rewriting rule' $-\tau^4 + 7 \tau^{-4} = 0$
- memory k = 4, anticipation h = 4, and so p = 9
- B = 7, M = 2, c = 1, a' = 3, a = 5
- ullet ... we have a 9-local algorithm on alphabet $\mathcal{A}=\{-5,\ldots,0,\ldots,+5\}$

- 'strong rewriting rule' $\beta^4 + 4 = 0$
- memory k = 4, anticipation h = 0, and so p = 5
- B = 4, M = 1, c = 1, a' = 2, a = 3

Example: irrational base $\beta = \tau =$ the Golden Mean:

- au is the bigger of the two roots of equation $au^2 = au + 1$, but this is NOT 'strong rewriting rule', however,
- instead, we can use the 'strong rewriting rule' $-\tau^4 + 7 \tau^{-4} = 0$
- memory k = 4, anticipation h = 4, and so p = 9
- B = 7, M = 2, c = 1, a' = 3, a = 5
- ullet ... we have a 9-local algorithm on alphabet $\mathcal{A}=\{-5,\ldots,0,\ldots,+5\}$

- 'strong rewriting rule' $\beta^4 + 4 = 0$
- memory k = 4, anticipation h = 0, and so p = 5
- B = 4, M = 1, c = 1, a' = 2, a = 3
- ... we have a 5-local algorithm on alphabet $\mathcal{A} = \{-3, \dots, 0, \dots, +3\}$

Example: irrational base $\beta = \frac{-17 - \sqrt{265}}{4} \doteq -8.3197$:

Example: irrational base
$$\beta = \frac{-17 - \sqrt{265}}{4} \doteq -8.3197$$
:

• root of the 'strong rewriting rule' $2\beta + 17 + 3\beta^{-1} = 0$

Example: irrational base
$$\beta = \frac{-17 - \sqrt{265}}{4} \doteq -8.3197$$
:

- root of the 'strong rewriting rule' $2\beta + 17 + 3\beta^{-1} = 0$
- memory k = 1, anticipation h = 1, and so p = 3

Example: irrational base $\beta = \frac{-17 - \sqrt{265}}{4} \doteq -8.3197$:

- root of the 'strong rewriting rule' $2\beta + 17 + 3\beta^{-1} = 0$
- memory k = 1, anticipation h = 1, and so p = 3
- B = 17, M = 5, c = 2, a' = 8, a = 18

Example: irrational base
$$\beta = \frac{-17 - \sqrt{265}}{4} \doteq -8.3197$$
:

- root of the 'strong rewriting rule' $2\beta + 17 + 3\beta^{-1} = 0$
- memory k = 1, anticipation h = 1, and so p = 3
- B = 17, M = 5, c = 2, a' = 8, a = 18
- ... 3-local algorithm on alphabet $A = \{-18, \ldots, 0, \ldots, +18\}$

Example: irrational base
$$\beta = \frac{-17 - \sqrt{265}}{4} \doteq -8.3197$$
:

- root of the 'strong rewriting rule' $2\beta + 17 + 3\beta^{-1} = 0$
- memory k = 1, anticipation h = 1, and so p = 3
- B = 17, M = 5, c = 2, a' = 8, a = 18
- ... 3-local algorithm on alphabet $A = \{-18, \dots, 0, \dots, +18\}$

Example: irrational base
$$\beta = \frac{-17 - \sqrt{265}}{4} \doteq -8.3197$$
:

- root of the 'strong rewriting rule' $2\beta + 17 + 3\beta^{-1} = 0$
- memory k = 1, anticipation h = 1, and so p = 3
- B = 17, M = 5, c = 2, a' = 8, a = 18
- ... 3-local algorithm on alphabet $A = \{-18, \dots, 0, \dots, +18\}$

Example: irrational base
$$\beta = \frac{-17 - \sqrt{265}}{4} \doteq -8.3197$$
:

- root of the 'strong rewriting rule' $2\beta + 17 + 3\beta^{-1} = 0$
- memory k = 1, anticipation h = 1, and so p = 3
- B = 17, M = 5, c = 2, a' = 8, a = 18
- ... 3-local algorithm on alphabet $A = \{-18, \dots, 0, \dots, +18\}$

Example: irrational base $\beta = \frac{-17 - \sqrt{265}}{4} \doteq -8.3197$:

- root of the 'strong rewriting rule' $2\beta + 17 + 3\beta^{-1} = 0$
- memory k = 1, anticipation h = 1, and so p = 3
- B = 17, M = 5, c = 2, a' = 8, a = 18
- ... 3-local algorithm on alphabet $\mathcal{A} = \{-18, \dots, 0, \dots, +18\}$

Example: irrational base
$$\beta = \frac{-17 - \sqrt{265}}{4} \doteq -8.3197$$
:

- root of the 'strong rewriting rule' $2\beta + 17 + 3\beta^{-1} = 0$
- memory k = 1, anticipation h = 1, and so p = 3
- B = 17, M = 5, c = 2, a' = 8, a = 18
- ... 3-local algorithm on alphabet $\mathcal{A} = \{-18, \dots, 0, \dots, +18\}$

See the concrete action of parallel addition in this numeration system:

... q_j are the convenient coefficients indicating which multiples of the 'strong rewriting rule' need to be deducted for j-th position.

?! Which algebraic numbers actually do have a 'strong rewriting rule'!?

?! Which algebraic numbers actually do have a 'strong rewriting rule'!?

Remember e.g. the case of the Golden Mean τ , whose minimal polynomial $\tau^2=\tau+1$ is NOT 'strong rewriting rule'.

?! Which algebraic numbers actually do have a 'strong rewriting rule'!?

Remember e.g. the case of the Golden Mean au, whose minimal polynomial $au^2= au+1$ is NOT 'strong rewriting rule'.

However, τ is also root of another equation $-\tau^4 + 7 - \tau^{-4} = 0$, which already IS a 'strong rewriting rule'.

?! Which algebraic numbers actually do have a 'strong rewriting rule'!?

Remember e.g. the case of the Golden Mean au, whose minimal polynomial $au^2= au+1$ is NOT 'strong rewriting rule'.

However, τ is also root of another equation $-\tau^4 + 7 - \tau^{-4} = 0$, which already IS a 'strong rewriting rule'.

It was not only by chance that we found this 'strong rewriting rule' for au:

?! Which algebraic numbers actually do have a 'strong rewriting rule'!?

Remember e.g. the case of the Golden Mean au, whose minimal polynomial $au^2= au+1$ is NOT 'strong rewriting rule'.

However, τ is also root of another equation $-\tau^4 + 7 - \tau^{-4} = 0$, which already IS a 'strong rewriting rule'.

It was not only by chance that we found this 'strong rewriting rule' for au:

Theorem

Let α be an algebraic number of degree d with algebraic conjugates α_1,\ldots,α_d (including α itself). Let $|\alpha_j|\neq 1$ for all $j=1,\ldots,d$, and let $|\alpha|>1$.

?! Which algebraic numbers actually do have a 'strong rewriting rule'!?

Remember e.g. the case of the Golden Mean au, whose minimal polynomial $au^2= au+1$ is NOT 'strong rewriting rule'.

However, τ is also root of another equation $-\tau^4 + 7 - \tau^{-4} = 0$, which already IS a 'strong rewriting rule'.

It was not only by chance that we found this 'strong rewriting rule' for au:

Theorem

Let α be an algebraic number of degree d with algebraic conjugates α_1,\ldots,α_d (including α itself). Let $|\alpha_j|\neq 1$ for all $j=1,\ldots,d$, and let $|\alpha|>1$.

Then there exists a polynomial $Q(X) \in \mathbb{Z}[X]$,

$$Q(X) = a_m X^m + a_{m-1} X^{m-1} + \dots + a_1 X^1 + a_0$$

and an index $j_0 \in \{0, ..., m\}$ such that

$$Q(\alpha) = 0$$
 and $|a_{j_0}| > 2 \sum_{j=0, j \neq j_0}^{m} |a_j|$.

We can read this Theorem, in other words, that equation $\frac{1}{X^{j_0}}Q(X)=0$ is a 'strong rewriting rule' for base α .

We can read this Theorem, in other words, that equation $\frac{1}{X^{j_0}}Q(X)=0$ is a 'strong rewriting rule' for base α .

It is important that we have proved this Theorem in a constructive way, so it gives a direct prescription leading to the concrete form of the 'strong rewriting rule' for a given base α , or β , ...

We can read this Theorem, in other words, that equation $\frac{1}{X^{j_0}}Q(X)=0$ is a 'strong rewriting rule' for base α .

It is important that we have proved this Theorem in a constructive way, so it gives a direct prescription leading to the concrete form of the 'strong rewriting rule' for a given base α , or β , ...

For some of the previously mentioned examples of bases, the application of this Theorem (and its constructive proof) provides the following results:

base $\beta \in \mathbb{C}$	minimal polynomial	polynomial $Q(X) \in \mathbb{Z}[X]$
		obtained from the Theorem
$\beta = 2$	$-\beta + 2 = 0$	$Q(X) = X^2 - 4$
$\beta = \tau$	$-\beta^2 + \beta + 1 = 0$	$Q(X) = X^8 - 7X^4 + 1$
$\beta = -1 + i$	$\beta^4 + 4 = 0$	$Q(X) = X^4 + 4$

As an implication of the previous Theorem, we have the following corollary:

As an implication of the previous Theorem, we have the following corollary:

Theorem

Let β be an algebraic number of degree d, and let $|\beta| > 1$.

As an implication of the previous Theorem, we have the following corollary:

Theorem

Let β be an algebraic number of degree d, and let $|\beta| > 1$.

• If d is odd, or

As an implication of the previous Theorem, we have the following corollary:

Theorem

Let β be an algebraic number of degree d, and let $|\beta| > 1$.

- If d is odd, or
- if d is even and the minimal polynomial of β is not reciprocal,

As an implication of the previous Theorem, we have the following corollary:

Theorem

Let β be an algebraic number of degree d, and let $|\beta| > 1$.

- If d is odd, or
- ullet if d is even and the minimal polynomial of eta is not reciprocal,

then β has a 'strong rewriting rule'.

As an implication of the previous Theorem, we have the following corollary:

Theorem

Let β be an algebraic number of degree d, and let $|\beta| > 1$.

- If d is odd, or
- if d is even and the minimal polynomial of β is not reciprocal,

then β has a 'strong rewriting rule'.

Thereby we see that the class of algebraic numbers β that do have a 'strong rewriting rule' is quite large.

And for all such algebraic numbers β , the Algorithm I is working; i.e. there exists an alphabet $\mathcal{A} = \{-a, \dots, +a\}$ in which addition can be done in parallel in the numeration system with base β .

• Having a numeration system with base β , which has a 'strong rewriting rule', we've seen how we can find an alphabet $\mathcal{A} = \{-a, \ldots, 0, \ldots, +a\}$ such that addition (and also deduction) is possible 'in parallel' (by means of a local function with a 'sliding window').

- Having a numeration system with base β , which has a 'strong rewriting rule', we've seen how we can find an alphabet $\mathcal{A} = \{-a, \ldots, 0, \ldots, +a\}$ such that addition (and also deduction) is possible 'in parallel' (by means of a local function with a 'sliding window').
- The number of steps needed to do the parallel addition within Algorithm I is quite low - in fact only three steps.

- Having a numeration system with base β , which has a 'strong rewriting rule', we've seen how we can find an alphabet $\mathcal{A} = \{-a, \ldots, 0, \ldots, +a\}$ such that addition (and also deduction) is possible 'in parallel' (by means of a local function with a 'sliding window').
- The number of steps needed to do the parallel addition within Algorithm I is quite low - in fact only three steps.
- ullet The one disadvantage there is that the alphabet ${\cal A}$ is rather big.

- Having a numeration system with base β , which has a 'strong rewriting rule', we've seen how we can find an alphabet $\mathcal{A} = \{-a, \ldots, 0, \ldots, +a\}$ such that addition (and also deduction) is possible 'in parallel' (by means of a local function with a 'sliding window').
- The number of steps needed to do the parallel addition within Algorithm I is quite low - in fact only three steps.
- ullet The one disadvantage there is that the alphabet ${\cal A}$ is rather big.

That is why we are introducing another method, Algorithm II, wherein

- Having a numeration system with base β , which has a 'strong rewriting rule', we've seen how we can find an alphabet $\mathcal{A} = \{-a, \ldots, 0, \ldots, +a\}$ such that addition (and also deduction) is possible 'in parallel' (by means of a local function with a 'sliding window').
- The number of steps needed to do the parallel addition within Algorithm I is quite low - in fact only three steps.
- ullet The one disadvantage there is that the alphabet ${\cal A}$ is rather big.

That is why we are introducing another method, Algorithm II, wherein

• instead of 'strong rewriting rule', we need only 'weak rewriting rule',

- Having a numeration system with base β , which has a 'strong rewriting rule', we've seen how we can find an alphabet $\mathcal{A} = \{-a, \ldots, 0, \ldots, +a\}$ such that addition (and also deduction) is possible 'in parallel' (by means of a local function with a 'sliding window').
- The number of steps needed to do the parallel addition within Algorithm I is quite low - in fact only three steps.
- ullet The one disadvantage there is that the alphabet ${\cal A}$ is rather big.

That is why we are introducing another method, Algorithm II, wherein

- instead of 'strong rewriting rule', we need only 'weak rewriting rule',
- ullet the alphabet ${\cal A}$ becomes smaller; however, on the other hand,

- Having a numeration system with base β , which has a 'strong rewriting rule', we've seen how we can find an alphabet $\mathcal{A} = \{-a, \ldots, 0, \ldots, +a\}$ such that addition (and also deduction) is possible 'in parallel' (by means of a local function with a 'sliding window').
- The number of steps needed to do the parallel addition within Algorithm I is quite low - in fact only three steps.
- ullet The one disadvantage there is that the alphabet ${\cal A}$ is rather big.

That is why we are introducing another method, Algorithm II, wherein

- instead of 'strong rewriting rule', we need only 'weak rewriting rule',
- ullet the alphabet ${\cal A}$ becomes smaller; however, on the other hand,
- the number of steps needed to do the parallel addition within Algorithm II is generally higher, compared to Algorithm I.

- Having a numeration system with base β , which has a 'strong rewriting rule', we've seen how we can find an alphabet $\mathcal{A} = \{-a, \ldots, 0, \ldots, +a\}$ such that addition (and also deduction) is possible 'in parallel' (by means of a local function with a 'sliding window').
- The number of steps needed to do the parallel addition within Algorithm I is quite low - in fact only three steps.
- ullet The one disadvantage there is that the alphabet ${\cal A}$ is rather big.

That is why we are introducing another method, Algorithm II, wherein

- instead of 'strong rewriting rule', we need only 'weak rewriting rule',
- ullet the alphabet ${\cal A}$ becomes smaller; however, on the other hand,
- the number of steps needed to do the parallel addition within Algorithm II is generally higher, compared to Algorithm I.

Cases where the two Algorithms I and II coincide are also specified.

Definition

An algebraic number $\beta \in \mathbb{C}$, $|\beta| > 1$ is said to have a 'weak rewriting rule' if there exist non-negative integers $h, k \in \mathbb{N}$, and a set of integers $b_k, b_{k-1}, \ldots, b_1, b_0, b_{-1}, \ldots, b_{-h} \in \mathbb{Z}$ such that

$$b_k \beta^k + b_{k-1} \beta^{k-1} + \dots + b_1 \beta^1 + b_0 + b_{-1} \beta^{-1} + \dots + b_{-h} \beta^{-h} = 0$$

and $b_0 > \sum_{j=-h, j \neq 0}^{k} |b_j|$.

Definition

An algebraic number $\beta \in \mathbb{C}$, $|\beta| > 1$ is said to have a 'weak rewriting rule' if there exist non-negative integers $h, k \in \mathbb{N}$, and a set of integers $b_k, b_{k-1}, \dots, b_1, b_0, b_{-1}, \dots, b_{-h} \in \mathbb{Z}$ such that

$$b_k \beta^k + b_{k-1} \beta^{k-1} + \ldots + b_1 \beta^1 + b_0 + b_{-1} \beta^{-1} + \ldots + b_{-h} \beta^{-h} = 0$$
and $b_0 > \sum_{i=1}^k b_i |b_i|$.

and $b_0 > \sum_{i=-h, i\neq 0}^{k} |b_i|$.

Theorem

Let $\beta \in \mathbb{C}$, $|\beta| > 1$ have a 'weak rewriting rule', wherein B, M denote $B = b_0$ and $M = \sum_{i=-h, i \neq 0}^{k} |b_i|$.

Definition

An algebraic number $\beta \in \mathbb{C}$, $|\beta| > 1$ is said to have a 'weak rewriting rule' if there exist non-negative integers $h, k \in \mathbb{N}$, and a set of integers $b_k, b_{k-1}, \dots, b_1, b_0, b_{-1}, \dots, b_{-h} \in \mathbb{Z}$ such that

$$b_k\beta^k + b_{k-1}\beta^{k-1} + \ldots + b_1\beta^1 + b_0 + b_{-1}\beta^{-1} + \ldots + b_{-h}\beta^{-h} = 0$$
 and $b_0 > \sum_{i=-h, i\neq 0}^k |b_i|$.

Theorem

Let $\beta \in \mathbb{C}$, $|\beta| > 1$ have a 'weak rewriting rule', wherein B, M denote $B = b_0$ and $M = \sum_{i=-h, i \neq 0}^{k} |b_i|$.

Then addition in numeration system with base β can be realized as a p-local function with memory sk and anticipation sh, in alphabet $\mathcal{A} = \{-a, \dots, 0, \dots, +a\}, \text{ where } \mathbf{a} = \left\lceil \frac{B-1}{2} \right\rceil + M, \text{ } \mathbf{s} = \left\lceil \frac{a}{B-M} \right\rceil, \text{ and }$ p = sk + sh + 1.

Algorithm II: Base β with a 'Weak Rewriting Rule' This (sk, sh)-local function of addition is described in Algorithm II,

Algorithm II: Base β with a 'Weak Rewriting Rule' This (sk, sh)-local function of addition is described in Algorithm II, with parameters:

This (sk, sh)-local function of addition is described in Algorithm II, with parameters:

• Notation: a = a' + M, where $a' = \lceil \frac{B-1}{2} \rceil$, $s = \lceil \frac{a}{B-M} \rceil$; alphabet $\mathcal{A} = \{-a, \ldots, 0, \ldots, +a\}$, inner alphabet $\mathcal{A}' = \{-a', \ldots, 0, \ldots, +a'\}$; integers m < n

This (sk, sh)-local function of addition is described in Algorithm II, with parameters:

- Notation: a = a' + M, where $a' = \lceil \frac{B-1}{2} \rceil$, $s = \lceil \frac{a}{B-M} \rceil$; alphabet $\mathcal{A} = \{-a, \dots, 0, \dots, +a\}$, inner alphabet $\mathcal{A}' = \{-a', \dots, 0, \dots, +a'\}$; integers $m \leq n$
- Input: $x = \sum_{i=m}^{n} x_i \beta^j$ and $y = \sum_{i=m}^{n} y_i \beta^j$; digits $x_j, y_j \in \mathcal{A}$

This (sk, sh)-local function of addition is described in Algorithm II, with parameters:

- Notation: a = a' + M, where $a' = \lceil \frac{B-1}{2} \rceil$, $s = \lceil \frac{a}{B-M} \rceil$; alphabet $\mathcal{A} = \{-a, \dots, 0, \dots, +a\}$, inner alphabet $\mathcal{A}' = \{-a', \dots, 0, \dots, +a'\}$; integers $m \leq n$
- Input: $x = \sum_{i=m}^{n} x_i \beta^j$ and $y = \sum_{i=m}^{n} y_i \beta^j$; digits $x_j, y_j \in A$
- Output: $z = x + y = \sum_{j=m-sh}^{n+sk} z_j \beta^j$; digits $z_j \in \mathcal{A}$

This (sk, sh)-local function of addition is described in Algorithm II, with parameters:

- Notation: a = a' + M, where $a' = \lceil \frac{B-1}{2} \rceil$, $s = \lceil \frac{a}{B-M} \rceil$; alphabet $\mathcal{A} = \{-a, \dots, 0, \dots, +a\}$, inner alphabet $\mathcal{A}' = \{-a', \dots, 0, \dots, +a'\}$; integers $m \leq n$
- Input: $x = \sum_{j=m}^{n} x_j \beta^j$ and $y = \sum_{j=m}^{n} y_j \beta^j$; digits $x_j, y_j \in \mathcal{A}$
- Output: $z = x + y = \sum_{j=m-sh}^{n+sk} z_j \beta^j$; digits $z_j \in \mathcal{A}$

This (sk, sh)-local function of addition is described in Algorithm II, with parameters:

- Notation: a = a' + M, where $a' = \lceil \frac{B-1}{2} \rceil$, $s = \lceil \frac{a}{B-M} \rceil$; alphabet $\mathcal{A} = \{-a, \dots, 0, \dots, +a\}$, inner alphabet $\mathcal{A}' = \{-a', \dots, 0, \dots, +a'\}$; integers $m \leq n$
- Input: $x = \sum_{j=m}^{n} x_j \beta^j$ and $y = \sum_{j=m}^{n} y_j \beta^j$; digits $x_j, y_j \in \mathcal{A}$
- Output: $z = x + y = \sum_{j=m-sh}^{n+sk} z_j \beta^j$; digits $z_j \in A$

and with steps:

• Line 0.: for each j = m, ..., n, put $w_j := x_j + y_j$

This (sk, sh)-local function of addition is described in Algorithm II, with parameters:

- Notation: a = a' + M, where $a' = \lceil \frac{B-1}{2} \rceil$, $s = \lceil \frac{a}{B-M} \rceil$; alphabet $\mathcal{A} = \{-a, \dots, 0, \dots, +a\}$, inner alphabet $\mathcal{A}' = \{-a', \dots, 0, \dots, +a'\}$; integers $m \leq n$
- Input: $x = \sum_{j=m}^{n} x_j \beta^j$ and $y = \sum_{j=m}^{n} y_j \beta^j$; digits $x_j, y_j \in \mathcal{A}$
- Output: $z = x + y = \sum_{j=m-sh}^{n+sk} z_j \beta^j$; digits $z_j \in A$

- Line 0.: for each j = m, ..., n, put $w_j := x_j + y_j$
- Line 1.: for each l = 1, ..., s do

This (sk, sh)-local function of addition is described in Algorithm II, with parameters:

- Notation: a = a' + M, where $a' = \lceil \frac{B-1}{2} \rceil$, $s = \lceil \frac{a}{B-M} \rceil$; alphabet $\mathcal{A} = \{-a, \dots, 0, \dots, +a\}$, inner alphabet $\mathcal{A}' = \{-a', \dots, 0, \dots, +a'\}$; integers $m \leq n$
- Input: $x = \sum_{i=m}^{n} x_{i} \beta^{j}$ and $y = \sum_{i=m}^{n} y_{i} \beta^{j}$; digits $x_{i}, y_{i} \in \mathcal{A}$
- Output: $z = x + y = \sum_{j=m-sh}^{n+sk} z_j \beta^j$; digits $z_j \in \mathcal{A}$

- Line 0.: for each j = m, ..., n, put $w_j := x_j + y_j$
- Line 1.: for each l = 1, ..., s do
 - ▶ Line 1.a: for each $j = m (l-1)h, \ldots, n + (l-1)k$, put

This (sk, sh)-local function of addition is described in Algorithm II, with parameters:

- Notation: a = a' + M, where $a' = \lceil \frac{B-1}{2} \rceil$, $s = \lceil \frac{a}{B-M} \rceil$; alphabet $\mathcal{A} = \{-a, \dots, 0, \dots, +a\}$, inner alphabet $\mathcal{A}' = \{-a', \dots, 0, \dots, +a'\}$; integers $m \leq n$
- Input: $x = \sum_{j=m}^{n} x_j \beta^j$ and $y = \sum_{j=m}^{n} y_j \beta^j$; digits $x_j, y_j \in A$
- Output: $z = x + y = \sum_{j=m-sh}^{n+sk} z_j \beta^j$; digits $z_j \in A$

- Line 0.: for each j = m, ..., n, put $w_j := x_j + y_j$
- Line 1.: for each l = 1, ..., s do
 - ▶ Line 1.a: for each $j = m (l-1)h, \ldots, n + (l-1)k$, put
 - **★** $q_j := 0$ if $w_j \in \mathcal{A}'$

This (sk, sh)-local function of addition is described in Algorithm II, with parameters:

- Notation: a = a' + M, where $a' = \lceil \frac{B-1}{2} \rceil$, $s = \lceil \frac{a}{B-M} \rceil$; alphabet $\mathcal{A} = \{-a, \dots, 0, \dots, +a\}$, inner alphabet $\mathcal{A}' = \{-a', \dots, 0, \dots, +a'\}$; integers $m \leq n$
- Input: $x = \sum_{j=m}^{n} x_j \beta^j$ and $y = \sum_{j=m}^{n} y_j \beta^j$; digits $x_j, y_j \in \mathcal{A}$
- Output: $z = x + y = \sum_{j=m-sh}^{n+sk} z_j \beta^j$; digits $z_j \in A$

- Line 0.: for each j = m, ..., n, put $w_j := x_j + y_j$
- Line 1.: for each l = 1, ..., s do
 - ▶ Line 1.a: for each $j = m (l-1)h, \ldots, n + (l-1)k$, put
 - $\star q_i := 0 \text{ if } w_i \in \mathcal{A}'$
 - **★** $q_j := \operatorname{sgn}(w_j)$ if $w_j \notin \mathcal{A}'$

This (sk, sh)-local function of addition is described in Algorithm II, with parameters:

- Notation: a = a' + M, where $a' = \lceil \frac{B-1}{2} \rceil$, $s = \lceil \frac{a}{B-M} \rceil$; alphabet $\mathcal{A} = \{-a, \dots, 0, \dots, +a\}$, inner alphabet $\mathcal{A}' = \{-a', \dots, 0, \dots, +a'\}$; integers $m \leq n$
- Input: $x = \sum_{j=m}^{n} x_j \beta^j$ and $y = \sum_{j=m}^{n} y_j \beta^j$; digits $x_j, y_j \in \mathcal{A}$
- Output: $z = x + y = \sum_{j=m-sh}^{n+sk} z_j \beta^j$; digits $z_j \in A$

- Line 0.: for each j = m, ..., n, put $w_j := x_j + y_j$
- Line 1.: for each $l = 1, \ldots, s$ do
 - ▶ Line 1.a: for each $j = m (l-1)h, \ldots, n + (l-1)k$, put
 - ★ $q_i := 0$ if $w_i \in \mathcal{A}'$
 - * $q_j := \operatorname{sgn}(w_j)$ if $w_j \notin \mathcal{A}'$
 - ▶ Line 1.b: for each j = m lh, ..., n + lk, put $w_j := w_j \sum_{i=-h}^k q_{j-i}b_i$

This (sk, sh)-local function of addition is described in Algorithm II, with parameters:

- Notation: a = a' + M, where $a' = \lceil \frac{B-1}{2} \rceil$, $s = \lceil \frac{a}{B-M} \rceil$; alphabet $\mathcal{A} = \{-a, \dots, 0, \dots, +a\}$, inner alphabet $\mathcal{A}' = \{-a', \dots, 0, \dots, +a'\}$; integers $m \leq n$
- Input: $x = \sum_{j=m}^{n} x_j \beta^j$ and $y = \sum_{j=m}^{n} y_j \beta^j$; digits $x_j, y_j \in A$
- Output: $z = x + y = \sum_{j=m-sh}^{n+sk} z_j \beta^j$; digits $z_j \in A$

- Line 0.: for each j = m, ..., n, put $w_j := x_j + y_j$
- Line 1.: for each l = 1, ..., s do
 - ▶ Line 1.a: for each $j = m (l-1)h, \ldots, n + (l-1)k$, put
 - $\star q_i := 0 \text{ if } w_i \in \mathcal{A}'$
 - $\star q_j := \operatorname{sgn}(w_j) \text{ if } w_j \notin \mathcal{A}'$
 - ▶ Line 1.b: for each j = m lh, ..., n + lk, put $w_j := w_j \sum_{i=-h}^k q_{j-i}b_i$
- Line 2.: for each j = m sh, ..., n + sk, put $z_i := w_i$

The basic idea of Algorithm II:

The basic idea of Algorithm II:

• the 'weak rewriting rule' decreases the maximum digit value by B-M in each step,

The basic idea of Algorithm II:

- the 'weak rewriting rule' decreases the maximum digit value by B-M in each step,
- by applying this action repeatedly, we get the minimal possible digits,

The basic idea of Algorithm II:

- ullet the 'weak rewriting rule' decreases the maximum digit value by B-M in each step,
- by applying this action repeatedly, we get the minimal possible digits,
- parameters a' and a are delimiting the alphabets (a for alphabet \mathcal{A} , a' for the inner alphabet \mathcal{A}'), and

The basic idea of Algorithm II:

- ullet the 'weak rewriting rule' decreases the maximum digit value by B-M in each step,
- by applying this action repeatedly, we get the minimal possible digits,
- parameters a' and a are delimiting the alphabets (a for alphabet \mathcal{A} , a' for the inner alphabet \mathcal{A}'), and
- s is the number of steps carried out in Line 1.

The basic idea of Algorithm II:

- ullet the 'weak rewriting rule' decreases the maximum digit value by B-M in each step,
- by applying this action repeatedly, we get the minimal possible digits,
- parameters a' and a are delimiting the alphabets (a for alphabet \mathcal{A} , a' for the inner alphabet \mathcal{A}'), and
- s is the number of steps carried out in Line 1.

Having a 'strong rewriting rule' for a base β , we can use both Algorithms I and II; then, they coincide if and only if $B \ge 4M - 1$; in such case:

The basic idea of Algorithm II:

- ullet the 'weak rewriting rule' decreases the maximum digit value by B-M in each step,
- by applying this action repeatedly, we get the minimal possible digits,
- parameters a' and a are delimiting the alphabets (a for alphabet \mathcal{A} , a' for the inner alphabet \mathcal{A}'), and
- *s* is the number of steps carried out in Line 1.

Having a 'strong rewriting rule' for a base β , we can use both Algorithms I and II; then, they coincide if and only if $B \ge 4M - 1$; in such case:

• in Algorithm I, the paremeter c=1, and so a=a'+cM=a'+M is the same as a=a'+M in Algorithm II;

The basic idea of Algorithm II:

- ullet the 'weak rewriting rule' decreases the maximum digit value by B-M in each step,
- by applying this action repeatedly, we get the minimal possible digits,
- parameters a' and a are delimiting the alphabets (a for alphabet \mathcal{A} , a' for the inner alphabet \mathcal{A}'), and
- s is the number of steps carried out in Line 1.

Having a 'strong rewriting rule' for a base β , we can use both Algorithms I and II; then, they coincide if and only if $B \ge 4M - 1$; in such case:

- in Algorithm I, the paremeter c=1, and so a=a'+cM=a'+M is the same as a=a'+M in Algorithm II;
- in Algorithm II, the parameter s=1, and so the number of steps is the same as in Algorithm I, and also the p-locality is the same (with p=sk+sh+1=k+h+1)

The basic idea of Algorithm II:

- the 'weak rewriting rule' decreases the maximum digit value by B-M in each step,
- by applying this action repeatedly, we get the minimal possible digits,
- parameters a' and a are delimiting the alphabets (a for alphabet \mathcal{A} , a' for the inner alphabet \mathcal{A}'), and
- *s* is the number of steps carried out in Line 1.

Having a 'strong rewriting rule' for a base β , we can use both Algorithms I and II; then, they coincide if and only if $B \ge 4M - 1$; in such case:

- in Algorithm I, the paremeter c=1, and so a=a'+cM=a'+M is the same as a=a'+M in Algorithm II;
- in Algorithm II, the parameter s=1, and so the number of steps is the same as in Algorithm I, and also the p-locality is the same (with p=sk+sh+1=k+h+1)

If 4M - 1 > B > 2M, then Algorithm II uses a strictly smaller alphabet than Algorithm I, but, at the same time, with strictly higher number of steps, and with strictly longer 'sliding window' (wider p-locality).

Example: integer base $\beta = b \in \mathbb{N}$, $b \ge 3$:

Example: integer base $\beta = b \in \mathbb{N}$, $b \ge 3$:

• $-\beta + b = 0$ is a 'strong rewriting rule', wherein

Example: integer base $\beta = b \in \mathbb{N}$, $b \ge 3$:

- $-\beta + b = 0$ is a 'strong rewriting rule', wherein
- B = b, M = 1, and $B \ge 4M 1 = 3$,

Example: integer base $\beta = b \in \mathbb{N}, \ b \ge 3$:

- $-\beta + b = 0$ is a 'strong rewriting rule', wherein
- B = b, M = 1, and $B \ge 4M 1 = 3$,
- so Algorithm II gives the same result as Algorithm I, namely again the Avizienis algorithm

Example: integer base $\beta = b \in \mathbb{N}$, $b \ge 3$:

- $-\beta + b = 0$ is a 'strong rewriting rule', wherein
- B = b, M = 1, and $B \ge 4M 1 = 3$,
- so Algorithm II gives the same result as Algorithm I, namely again the Avizienis algorithm

Example: integer base $\beta = b \in \mathbb{N}, \ b \ge 3$:

- $-\beta + b = 0$ is a 'strong rewriting rule', wherein
- B = b, M = 1, and $B \ge 4M 1 = 3$,
- so Algorithm II gives the same result as Algorithm I, namely again the Avizienis algorithm

Example: integer base $\beta = 2$:

• $-\beta + 2 = 0$ is NOT 'strong rewriting rule', but

Example: integer base $\beta = b \in \mathbb{N}, \ b \ge 3$:

- $-\beta + b = 0$ is a 'strong rewriting rule', wherein
- B = b, M = 1, and $B \ge 4M 1 = 3$,
- so Algorithm II gives the same result as Algorithm I, namely again the Avizienis algorithm

- $-\beta + 2 = 0$ is NOT 'strong rewriting rule', but
- it is a 'weak rewriting rule', which we can use for Algorithm II,

Example: integer base $\beta = b \in \mathbb{N}, \ b \ge 3$:

- $-\beta + b = 0$ is a 'strong rewriting rule', wherein
- B = b, M = 1, and $B \ge 4M 1 = 3$,
- so Algorithm II gives the same result as Algorithm I, namely again the Avizienis algorithm

- $-\beta + 2 = 0$ is NOT 'strong rewriting rule', but
- it is a 'weak rewriting rule', which we can use for Algorithm II,
- with parameters B=2, M=1, a'=1, a=2, s=2, k=1, h=0, and therefore memory sk=2, anticipation sh=0, and so p=sk+sh+1=3

Example: integer base $\beta = b \in \mathbb{N}, \ b \ge 3$:

- $-\beta + b = 0$ is a 'strong rewriting rule', wherein
- B = b, M = 1, and $B \ge 4M 1 = 3$,
- so Algorithm II gives the same result as Algorithm I, namely again the Avizienis algorithm

- $-\beta + 2 = 0$ is NOT 'strong rewriting rule', but
- it is a 'weak rewriting rule', which we can use for Algorithm II,
- with parameters B=2, M=1, a'=1, a=2, s=2, k=1, h=0, and therefore memory sk=2, anticipation sh=0, and so p=sk+sh+1=3
- ... again 3-local (like Chow & Robertson), but still with bigger alphabet $\mathcal{A}=\{-2,-1,0,+1,+2\}$ than Chow & Robertson (where $\mathcal{A}=\{-1,0,+1\}$)

Example: irrational base $\beta = \tau =$ the Golden Mean:

• the minimal polynomial $\tau^2=\tau+1$ of the Golden Mean τ is NEITHER 'strong' NOR 'weak rewriting rule',

- the minimal polynomial $\tau^2=\tau+1$ of the Golden Mean τ is NEITHER 'strong' NOR 'weak rewriting rule',
- there exists the 'strong rewriting rule' $-\tau^4 + 7 \tau^{-4} = 0$, used for Algorithm I, and

- the minimal polynomial $\tau^2=\tau+1$ of the Golden Mean τ is NEITHER 'strong' NOR 'weak rewriting rule',
- there exists the 'strong rewriting rule' $-\tau^4 + 7 \tau^{-4} = 0$, used for Algorithm I, and
- there exists also a 'weak rewriting rule' which we can use for Algorithm II, namely $-\tau^2 + 3 \tau^{-2} = 0$:

- the minimal polynomial $\tau^2=\tau+1$ of the Golden Mean τ is NEITHER 'strong' NOR 'weak rewriting rule',
- there exists the 'strong rewriting rule' $-\tau^4+7-\tau^{-4}=0$, used for Algorithm I, and
- there exists also a 'weak rewriting rule' which we can use for Algorithm II, namely $-\tau^2 + 3 \tau^{-2} = 0$:
- with parameters B=3, M=2, a'=1, a=3, s=3, k=2, h=2, and therefore memory sk=6, anticipation sh=6, and so p=sk+sh+1=13

- the minimal polynomial $\tau^2=\tau+1$ of the Golden Mean τ is NEITHER 'strong' NOR 'weak rewriting rule',
- there exists the 'strong rewriting rule' $-\tau^4+7-\tau^{-4}=0$, used for Algorithm I, and
- there exists also a 'weak rewriting rule' which we can use for Algorithm II, namely $-\tau^2 + 3 \tau^{-2} = 0$:
- with parameters B=3, M=2, a'=1, a=3, s=3, k=2, h=2, and therefore memory sk=6, anticipation sh=6, and so p=sk+sh+1=13
- ... Algorithm II is 13-local, with alphabet $A = \{-3, \dots, 0, \dots, +3\}$

- the minimal polynomial $\tau^2=\tau+1$ of the Golden Mean τ is NEITHER 'strong' NOR 'weak rewriting rule',
- there exists the 'strong rewriting rule' $-\tau^4+7-\tau^{-4}=0$, used for Algorithm I, and
- there exists also a 'weak rewriting rule' which we can use for Algorithm II, namely $-\tau^2 + 3 \tau^{-2} = 0$:
- with parameters B=3, M=2, a'=1, a=3, s=3, k=2, h=2, and therefore memory sk=6, anticipation sh=6, and so p=sk+sh+1=13
- ... Algorithm II is 13-local, with alphabet $A = \{-3, \dots, 0, \dots, +3\}$
- ... compare with Algorithm I for τ (based on the 'strong rewriting rule' $-\tau^4+7-\tau^{-4}=0$), which is 9-local on alphabet $\mathcal{A}=\{-5,\ldots,0,\ldots,+5\}$

position	j	:	8	7	6	5	4	3	2	1	0.	-1	-2	-3	-4
	X	=					3	-1	3	0	3.				
	y	=					2	0	3	-2	3.				
	Winitial	=					5	-1	6	-2	6.				

position	j	:	8	7	6	5	4	3	2	1	0.	-1	-2	-3	-4
	x	=					3	-1	3	0	3.				
	y	=					2	0	3	-2	3.				
	Winitial	=					5	-1	6	-2	6.				
I = 1	$q_0 = 1$	\mapsto							1	0	-3.	0	1		
	$q_1 = -1$	\mapsto						-1	0	3	0.	-1			
	$q_2 = 1$	\mapsto					1	0	-3	0	1.				
	$q_4 = 1$	\mapsto			1	0	-3	0	1						
	$w_{l=1}$	=			1	0	3	-2	5	1	4.	-1	1		

position	j	:	8	7	6	5	4	3	2	1	0.	-1	-2	-3	-4
	x	=					3	-1	3	0	3.				
	У	=					2	0	3	-2	3.				
	Winitial	=					5	-1	6	-2	6.				
I = 1	$q_0 = 1$	\mapsto							1	0	-3.	0	1		
	$q_1 = -1$	\mapsto						-1	0	3	0.	-1			
	$q_2 = 1$	\mapsto					1	0	-3	0	1.				
	$q_4 = 1$	\mapsto			1	0	-3	0	1						
	$w_{l=1}$	=			1	0	3	-2	5	1	4.	-1	1		
<i>l</i> = 2	$q_0 = 1$	\mapsto							1	0	-3.	0	1		
	$q_2 = 1$	\mapsto					1	0	-3	0	1.				
	$q_3 = -1$	\mapsto				-1	0	3	0	-1					
	$q_4 = 1$	\mapsto			1	0	-3	0	1						
	$w_{l=2}$	=			2	-1	1	1	4	0	2.	-1	2		

position	j	:	8	7	6	5	4	3	2	1	0.	-1	-2	-3	-4
	x	=					3	-1	3	0	3.				
	У	=					2	0	3	-2	3.				
	Winitial	=					5	-1	6	-2	6.				
I = 1	$q_0 = 1$	\mapsto							1	0	-3.	0	1		
	$q_1 = -1$	\mapsto						-1	0	3	0.	-1			
	$q_2 = 1$	\mapsto					1	0	-3	0	1.				
	$q_4 = 1$	\mapsto			1	0	-3	0	1						
	$w_{l=1}$	=			1	0	3	-2	5	1	4.	-1	1		
I = 2	$q_0 = 1$	\mapsto							1	0	-3.	0	1		
	$q_2 = 1$	\mapsto					1	0	-3	0	1.				
	$q_3 = -1$	\mapsto				-1	0	3	0	-1					
	$q_4 = 1$	\mapsto			1	0	-3	0	1						
	$w_{l=2}$	=			2	-1	1	1	4	0	2.	-1	2		
<i>l</i> = 3	$q_{-2} = 1$	\mapsto									1.	0	-3	0	1
	$q_0 = 1$	\mapsto							1	0	-3.	0	1		
	$q_2 = 1$	\mapsto					1	0	-3	0	1.				
	$q_6 = 1$	\mapsto	1	0	-3	0	1								
z =	$w_{l=3}$	=	1	0	-1	-1	3	1	2	0	1.	-1	0	0	1

See the concrete action of parallel addition in this numeration system:

position	j	:	8	7	6	5	4	3	2	1	0.	-1	-2	-3	-4
	X	=					3	-1	3	0	3.				
	y	=					2	0	3	-2	3.				
	Winitial	=					5	-1	6	-2	6.				
I = 1	$q_0 = 1$	\mapsto							1	0	-3.	0	1		
	$q_1 = -1$	\mapsto						-1	0	3	0.	-1			
	$q_2 = 1$	\mapsto					1	0	-3	0	1.				
	$q_4 = 1$	\mapsto			1	0	-3	0	1						
	$w_{l=1}$	=			1	0	3	-2	5	1	4.	-1	1		
<i>I</i> = 2	$q_0 = 1$	\mapsto							1	0	-3.	0	1		
	$q_2 = 1$	\mapsto					1	0	-3	0	1.				
	$q_3 = -1$	\mapsto				-1	0	3	0	-1					
	$q_4 = 1$	\mapsto			1	0	-3	0	1						
	$w_{l=2}$	=			2	-1	1	1	4	0	2.	-1	2		
<i>I</i> = 3	$q_{-2} = 1$	\mapsto									1.	0	-3	0	1
	$q_0 = 1$	\mapsto							1	0	-3.	0	1		
	$q_2 = 1$	\mapsto					1	0	-3	0	1.				
	$q_6 = 1$	\mapsto	1	0	-3	0	1								
z =	$w_{l=3}$	=	1	0	-1	-1	3	1	2	0	1.	-1	0	0	1
															_=

We run 3-times through the formulas on Line 1., because s = 3.

See the concrete action of parallel addition in this numeration system:

x y		=						3	2	1	0.	-1	-2	-3	-4
		_					3	-1	3	0	3.				
	/	=					2	0	3	-2	3.				
и	^V initial	=					5	-1	6	-2	6.				
I=1 q	$q_0 = 1$	\mapsto							1	0	-3.	0	1		
q	$q_1 = -1$	\mapsto						-1	0	3	0.	-1			
q	$q_2 = 1$	\mapsto					1	0	-3	0	1.				
q.	$q_4 = 1$	\mapsto			1	0	-3	0	1						
и	v _{/=1}	=			1	0	3	-2	5	1	4.	-1	1		
I=2 q	$q_0 = 1$	\rightarrow							1	0	-3.	0	1		
q	$q_2 = 1$	\mapsto					1	0	-3	0	1.				
	$q_3 = -1$	\mapsto				-1	0	3	0	-1					
q.	$q_4 = 1$	\mapsto			1	0	-3	0	1						
и	$v_{l=2}$	=			2	-1	1	1	4	0	2.	-1	2		
I=3 q	$g_{-2} = 1$	\mapsto									1.	0	-3	0	1
	$q_0 = 1$	\mapsto							1	0	-3.	0	1		
q	$q_2 = 1$	\mapsto					1	0	-3	0	1.				
q	$q_6 = 1$	\mapsto	1	0	-3	0	1								
z = w	V/=3	=	1	0	-1	-1	3	1	2	0	1.	-1	0	0	1

We run 3-times through the formulas on Line 1., because s=3. Notice how the length of the τ -representation is prolonged in each run...

• One feature, which is in common for both the Algorithms I and II, is that the decision about application of the rewriting rule at position *j* depends only on the actual value of the digit at the *j*-th position, and not on values of digits on any of the neighboring positions.

- One feature, which is in common for both the Algorithms I and II, is that the decision about application of the rewriting rule at position *j* depends only on the actual value of the digit at the *j*-th position, and not on values of digits on any of the neighboring positions.
- This is a crucial difference against the algorithm of Chow & Robertson, in which the decision whether or not to apply the rewriting rule on position j depends not only on the actual digit on position j itself, but also on the value of digit of its right neighbor on position j-1.

- One feature, which is in common for both the Algorithms I and II, is that the decision about application of the rewriting rule at position *j* depends only on the actual value of the digit at the *j*-th position, and not on values of digits on any of the neighboring positions.
- This is a crucial difference against the algorithm of Chow & Robertson, in which the decision whether or not to apply the rewriting rule on position j depends not only on the actual digit on position j itself, but also on the value of digit of its right neighbor on position j-1.
- Although this idea to check the values on neighboring positions when operating on j-th position is not easy to generalize, we took it as inspiration when searching how to further decrease the alphabet for parallel addition in base τ , the Golden Mean. Further we provide the result: parallel addition in base τ with alphabet $\mathcal{A} = \{-1, 0, +1\}$.

- One feature, which is in common for both the Algorithms I and II, is that the decision about application of the rewriting rule at position *j* depends only on the actual value of the digit at the *j*-th position, and not on values of digits on any of the neighboring positions.
- This is a crucial difference against the algorithm of Chow & Robertson, in which the decision whether or not to apply the rewriting rule on position j depends not only on the actual digit on position j itself, but also on the value of digit of its right neighbor on position j-1.
- Although this idea to check the values on neighboring positions when operating on j-th position is not easy to generalize, we took it as inspiration when searching how to further decrease the alphabet for parallel addition in base τ , the Golden Mean. Further we provide the result: parallel addition in base τ with alphabet $\mathcal{A} = \{-1, 0, +1\}$.
- This result, with just minor modifications, is valid also for calculating in the Fibonacci numeration system, which is based on the same basic rewriting rule $F_{i+2} = F_{i+1} + F_i$.

Special Algorithms for Base τ , the Golden Mean

For base au, the Golden Mean, we are able to do parallel addition

Special Algorithms for Base τ , the Golden Mean

For base τ , the Golden Mean, we are able to do parallel addition

• via Algorithm I, using the 'strong rewriting rule' $-\tau^4 + 7 - \tau^{-4} = 0$, with alphabet $\mathcal{A} = \{-5, \dots, 0, \dots, +5\}$; or

Special Algorithms for Base τ , the Golden Mean

For base au, the Golden Mean, we are able to do parallel addition

- via Algorithm I, using the 'strong rewriting rule' $-\tau^4 + 7 \tau^{-4} = 0$, with alphabet $\mathcal{A} = \{-5, \dots, 0, \dots, +5\}$; or
- via Algorithm II, using the 'weak rewriting rule' $-\tau^2 + 3 \tau^{-2} = 0$, with alphabet $A = \{-3, ..., 0, ..., +3\}$;

For base τ , the Golden Mean, we are able to do parallel addition

- via Algorithm I, using the 'strong rewriting rule' $-\tau^4 + 7 \tau^{-4} = 0$, with alphabet $\mathcal{A} = \{-5, \dots, 0, \dots, +5\}$; or
- via Algorithm II, using the 'weak rewriting rule' $-\tau^2 + 3 \tau^{-2} = 0$, with alphabet $A = \{-3, ..., 0, ..., +3\}$;

We introduce still two additional algorithms, developed specifically for the base τ , which enable us to further decrease the alphabet as follows:

For base au, the Golden Mean, we are able to do parallel addition

- via Algorithm I, using the 'strong rewriting rule' $-\tau^4 + 7 \tau^{-4} = 0$, with alphabet $\mathcal{A} = \{-5, \dots, 0, \dots, +5\}$; or
- via Algorithm II, using the 'weak rewriting rule' $-\tau^2 + 3 \tau^{-2} = 0$, with alphabet $\mathcal{A} = \{-3, \dots, 0, \dots, +3\}$;

We introduce still two additional algorithms, developed specifically for the base τ , which enable us to further decrease the alphabet as follows:

• Algorithm A: using the rewriting rule $-\tau^2 + 3 - \tau^{-2} = 0$ on j-th position, and checking the values of digits on neighboring positions j + 2 and j - 2, we get to alphabet $\mathcal{A} = \{-2, -1, 0, +1, +2\}$;

For base au, the Golden Mean, we are able to do parallel addition

- via Algorithm I, using the 'strong rewriting rule' $-\tau^4 + 7 \tau^{-4} = 0$, with alphabet $\mathcal{A} = \{-5, \dots, 0, \dots, +5\}$; or
- via Algorithm II, using the 'weak rewriting rule' $-\tau^2 + 3 \tau^{-2} = 0$, with alphabet $\mathcal{A} = \{-3, \dots, 0, \dots, +3\}$;

We introduce still two additional algorithms, developed specifically for the base τ , which enable us to further decrease the alphabet as follows:

- Algorithm A: using the rewriting rule $-\tau^2 + 3 \tau^{-2} = 0$ on j-th position, and checking the values of digits on neighboring positions j + 2 and j 2, we get to alphabet $A = \{-2, -1, 0, +1, +2\}$;
- plus, we do one additional trick, taking advantage of the fact that the rewriting rule $-\tau^2 + 3 \tau^{-2} = 0$ operates only on positions j, j+2, j-2, but leaves positions j+1 and j-1 untouched; and

For base au, the Golden Mean, we are able to do parallel addition

- via Algorithm I, using the 'strong rewriting rule' $-\tau^4 + 7 \tau^{-4} = 0$, with alphabet $\mathcal{A} = \{-5, \dots, 0, \dots, +5\}$; or
- via Algorithm II, using the 'weak rewriting rule' $-\tau^2 + 3 \tau^{-2} = 0$, with alphabet $A = \{-3, ..., 0, ..., +3\}$;

We introduce still two additional algorithms, developed specifically for the base τ , which enable us to further decrease the alphabet as follows:

- Algorithm A: using the rewriting rule $-\tau^2 + 3 \tau^{-2} = 0$ on j-th position, and checking the values of digits on neighboring positions j+2 and j-2, we get to alphabet $\mathcal{A} = \{-2, -1, 0, +1, +2\}$;
- plus, we do one additional trick, taking advantage of the fact that the rewriting rule $-\tau^2 + 3 \tau^{-2} = 0$ operates only on positions j, j+2, j-2, but leaves positions j+1 and j-1 untouched; and
- Algorithm B: using the rewriting rules $2 = \tau + 1 \tau^{-1}$ and $2 = 1 + \tau^{-1} + \tau^{-2}$, we limit the alphabet to $\mathcal{A} = \{-1, 0, +1\}$, which is the minimal possible alphabet for parallel addition in base τ .

Algorithm A uses the rewriting rule $-\tau^2 + 3 - \tau^{-2} = 0$:

Algorithm A uses the rewriting rule $-\tau^2 + 3 - \tau^{-2} = 0$: notation:

Algorithm A uses the rewriting rule $-\tau^2 + 3 - \tau^{-2} = 0$: notation:

• Input: $w = \sum_{j} w_{j} \tau^{j}$; digits $w_{j} \in \{-3, \dots, 0, \dots, +3\}$

Algorithm A uses the rewriting rule $-\tau^2 + 3 - \tau^{-2} = 0$: notation:

- Input: $w = \sum_{i} w_{i} \tau^{j}$; digits $w_{j} \in \{-3, ..., 0, ..., +3\}$
- Output: $z = w = \sum_{i} z_{j} \tau^{j}$; digits $z_{j} \in \{-2, -1, 0, +1, +2\}$

Algorithm A uses the rewriting rule $-\tau^2 + 3 - \tau^{-2} = 0$: notation:

- Input: $w = \sum_{i} w_{i} \tau^{j}$; digits $w_{j} \in \{-3, ..., 0, ..., +3\}$
- Output: $z = w = \sum_{j} z_j \tau^j$; digits $z_j \in \{-2, -1, 0, +1, +2\}$

Algorithm A uses the rewriting rule $-\tau^2 + 3 - \tau^{-2} = 0$:

notation:

- Input: $w = \sum_{j} w_{j} \tau^{j}$; digits $w_{j} \in \{-3, \dots, 0, \dots, +3\}$
- Output: $z = w = \sum_{i} z_{i} \tau^{j}$; digits $z_{j} \in \{-2, -1, 0, +1, +2\}$

- Line 1.: for each j do
 - if $[w_j = 3]$ or $[w_j = 2$ and $(w_{j+2} \ge 2$ or $w_{j-2} \ge 2)]$ or $[(w_j = 1)$ and $(w_{j+2} > 0)$ and $w_{j-2} > 0]$, put $q_j := 1$;
 - ▶ if $[w_j = -3]$ or $[w_j = -2$ and $(w_{j+2} \le -2$ or $w_{j-2} \le -2)]$ or $[(w_j = -1)$ and $(w_{j+2} < 0)$ and $w_{j-2} < 0)]$, put $q_j := -1$;
 - else put $q_i := 0$

Algorithm A uses the rewriting rule $-\tau^2 + 3 - \tau^{-2} = 0$:

notation:

- Input: $w = \sum_{j} w_{j} \tau^{j}$; digits $w_{j} \in \{-3, \dots, 0, \dots, +3\}$
- Output: $z = w = \sum_{i} z_{i} \tau^{j}$; digits $z_{j} \in \{-2, -1, 0, +1, +2\}$

- Line 1.: for each j do
 - if $[w_j = 3]$ or $[w_j = 2$ and $(w_{j+2} \ge 2$ or $w_{j-2} \ge 2)]$ or $[(w_j = 1)$ and $(w_{j+2} > 0)$ and $w_{j-2} > 0]$, put $q_j := 1$;
 - ▶ if $[w_j = -3]$ or $[w_j = -2$ and $(w_{j+2} \le -2$ or $w_{j-2} \le -2)]$ or $[(w_j = -1)$ and $(w_{j+2} < 0)$ and $w_{j-2} < 0)]$, put $q_j := -1$;
 - else put $q_i := 0$
- Line 2.: for each j, put $z_i := w_i 3q_i + q_{i+2} + q_{i-2}$

Algorithm A uses the rewriting rule $-\tau^2 + 3 - \tau^{-2} = 0$:

- notation:
 - Input: $w = \sum_{j} w_{j} \tau^{j}$; digits $w_{j} \in \{-3, \dots, 0, \dots, +3\}$
 - Output: $z = w = \sum_{i} z_{j} \tau^{j}$; digits $z_{j} \in \{-2, -1, 0, +1, +2\}$

steps:

- Line 1.: for each j do
 - if $[w_j = 3]$ or $[w_j = 2$ and $(w_{j+2} \ge 2$ or $w_{j-2} \ge 2)]$ or $[(w_j = 1)$ and $(w_{j+2} > 0)$ and $w_{j-2} > 0]$, put $q_j := 1$;
 - ▶ if $[w_j = -3]$ or $[w_j = -2$ and $(w_{j+2} \le -2$ or $w_{j-2} \le -2)]$ or $[(w_i = -1)$ and $(w_{i+2} < 0)$ and $w_{i-2} < 0)]$, put $q_i := -1$;
 - else put $q_i := 0$
- Line 2.: for each j, put $z_j := w_j 3q_j + q_{j+2} + q_{j-2}$

Application of Algorithm A onto τ -representation in alphabet $\{-3,\ldots,0,\ldots,+3\}$ results in τ -representation in alphabet $\{-2,-1,0,+1,+2\}$.

Algorithm B uses rewriting rules $2 = \tau + 1 - \tau^{-1}$ and $2 = 1 + \tau^{-1} + \tau^{-2}$:

Algorithm B uses rewriting rules $2 = \tau + 1 - \tau^{-1}$ and $2 = 1 + \tau^{-1} + \tau^{-2}$: notation:

Algorithm B uses rewriting rules $2 = \tau + 1 - \tau^{-1}$ and $2 = 1 + \tau^{-1} + \tau^{-2}$: notation:

• Input: $w = \sum_{i} w_{i} \tau^{j}$; digits $w_{2i} \in \{-2, -1, 0, +1, +2\}, w_{2i+1} = 0$

Algorithm B uses rewriting rules $2 = \tau + 1 - \tau^{-1}$ and $2 = 1 + \tau^{-1} + \tau^{-2}$: notation:

- Input: $w = \sum_{j} w_{j} \tau^{j}$; digits $w_{2j} \in \{-2, -1, 0, +1, +2\}, w_{2j+1} = 0$
- Output: $z = w = \sum_{i} z_{i} \tau^{j}$; digits $z_{i} \in \{-1, 0, +1\}$

Algorithm B uses rewriting rules $2 = \tau + 1 - \tau^{-1}$ and $2 = 1 + \tau^{-1} + \tau^{-2}$: notation:

- Input: $w = \sum_{i} w_{j} \tau^{j}$; digits $w_{2j} \in \{-2, -1, 0, +1, +2\}, w_{2j+1} = 0$
- Output: $z = w = \sum_{j} z_j \tau^j$; digits $z_j \in \{-1, 0, +1\}$

Algorithm B uses rewriting rules $2 = \tau + 1 - \tau^{-1}$ and $2 = 1 + \tau^{-1} + \tau^{-2}$: notation:

- Input: $w = \sum_{j} w_j \tau^j$; digits $w_{2j} \in \{-2, -1, 0, +1, +2\}, w_{2j+1} = 0$
- Output: $z = w = \sum_{j} z_j \tau^j$; digits $z_j \in \{-1, 0, +1\}$

- Line 1.: for each j do
 - ▶ if $w_j = 2$ and $w_{j-2} \ge 0$, put $q_j := -1$, $l_j := 1$, $m_j := -1$, $r_j := 0$;
 - ▶ if $w_j = 2$ and $w_{j-2} \le -1$, put $q_j := -1$, $l_j := 0$, $m_j := 1$, $r_j := 1$;
 - if $w_j = -2$ and $w_{j-2} \le 0$, put $q_j := 1$, $l_j := -1$, $m_j := 1$, $r_j := 0$;
 - ▶ if $w_j = -2$ and $w_{j-2} \ge 1$, put $q_j := 1$, $l_j := 0$, $m_j := -1$, $r_j := -1$;
 - if $w_j \neq \pm 2$, put $q_j := 0$, $l_j := 0$, $m_j := 0$, $r_j := 0$

Algorithm B uses rewriting rules $2 = \tau + 1 - \tau^{-1}$ and $2 = 1 + \tau^{-1} + \tau^{-2}$: notation:

- Input: $w = \sum_{j} w_{j} \tau^{j}$; digits $w_{2j} \in \{-2, -1, 0, +1, +2\}, w_{2j+1} = 0$
- Output: $z = w = \sum_{j} z_j \tau^j$; digits $z_j \in \{-1, 0, +1\}$

- Line 1.: for each j do
 - if $w_j = 2$ and $w_{j-2} \ge 0$, put $q_j := -1$, $l_j := 1$, $m_j := -1$, $r_j := 0$;
 - ▶ if $w_j = 2$ and $w_{j-2} \le -1$, put $q_j := -1$, $l_j := 0$, $m_j := 1$, $r_j := 1$;
 - if $w_j = -2$ and $w_{j-2} \le 0$, put $q_j := 1$, $l_j := -1$, $m_j := 1$, $r_j := 0$;
 - ▶ if $w_j = -2$ and $w_{j-2} \ge 1$, put $q_j := 1$, $l_j := 0$, $m_j := -1$, $r_j := -1$;
 - if $w_i \neq \pm 2$, put $q_i := 0$, $l_i := 0$, $m_i := 0$, $r_i := 0$
- Line 2.: for each j, put $z_j := w_j + q_j + m_{j+1} + r_{j+2} + l_{j-1}$

Algorithm B uses rewriting rules $2 = \tau + 1 - \tau^{-1}$ and $2 = 1 + \tau^{-1} + \tau^{-2}$: notation:

- Input: $w = \sum_{j} w_j \tau^j$; digits $w_{2j} \in \{-2, -1, 0, +1, +2\}, w_{2j+1} = 0$
- Output: $z = w = \sum_{j} z_j \tau^j$; digits $z_j \in \{-1, 0, +1\}$

steps:

- Line 1.: for each j do
 - ▶ if $w_j = 2$ and $w_{j-2} \ge 0$, put $q_j := -1$, $l_j := 1$, $m_j := -1$, $r_j := 0$;
 - ▶ if $w_j = 2$ and $w_{j-2} \le -1$, put $q_j := -1$, $l_j := 0$, $m_j := 1$, $r_j := 1$;
 - if $w_i = -2$ and $w_{i-2} \le 0$, put $q_i := 1$, $l_i := -1$, $m_i := 1$, $r_i := 0$;
 - ▶ if $w_j = -2$ and $w_{j-2} \ge 1$, put $q_j := 1$, $l_j := 0$, $m_j := -1$, $r_j := -1$;
 - if $w_i \neq \pm 2$, put $q_i := 0$, $l_i := 0$, $m_i := 0$, $r_i := 0$
- Line 2.: for each j, put $z_i := w_i + q_i + m_{i+1} + r_{i+2} + l_{i-1}$

Application of Algorithm B onto τ -representation with even digits in alphabet $\{-2,-1,0,+1,+2\}$ and with zero odd digits results in τ -representation in alphabet $\{-1,0,+1\}$.

Now we compile the methods explained earlier into the final Algorithm III which carries out parallel addition in base τ with the minimal possible alphabet $\mathcal{A} = \{-1,0,+1\}$. (The minimality of this alphabet has been proved by Ch.Frougny.)

Now we compile the methods explained earlier into the final Algorithm III which carries out parallel addition in base τ with the minimal possible alphabet $\mathcal{A} = \{-1,0,+1\}$. (The minimality of this alphabet has been proved by Ch.Frougny.)

Algorithm III combines Algorithm II with Algorithm A and Algorithm B, in the following way:

Now we compile the methods explained earlier into the final Algorithm III which carries out parallel addition in base τ with the minimal possible alphabet $\mathcal{A} = \{-1,0,+1\}$. (The minimality of this alphabet has been proved by Ch.Frougny.)

Algorithm III combines Algorithm II with Algorithm A and Algorithm B, in the following way:

notation:

Now we compile the methods explained earlier into the final Algorithm III which carries out parallel addition in base τ with the minimal possible alphabet $\mathcal{A} = \{-1,0,+1\}$. (The minimality of this alphabet has been proved by Ch.Frougny.)

Algorithm III combines Algorithm II with Algorithm A and Algorithm B, in the following way:

notation:

• Input: $x = \sum_j x_j \tau^j$, $y = \sum_j y_j \tau^j$; digits $x_j, y_j \in \mathcal{A} = \{-1, 0, +1\}$

Now we compile the methods explained earlier into the final Algorithm III which carries out parallel addition in base τ with the minimal possible alphabet $\mathcal{A} = \{-1,0,+1\}$. (The minimality of this alphabet has been proved by Ch.Frougny.)

Algorithm III combines Algorithm II with Algorithm A and Algorithm B, in the following way:

notation:

- Input: $x = \sum_j x_j \tau^j$, $y = \sum_j y_j \tau^j$; digits $x_j, y_j \in \mathcal{A} = \{-1, 0, +1\}$
- Output: $z = x + y = \sum_{i} z_{i} \tau^{j}$; digits $z_{j} \in \mathcal{A} = \{-1, 0, +1\}$

Now we compile the methods explained earlier into the final Algorithm III which carries out parallel addition in base τ with the minimal possible alphabet $\mathcal{A} = \{-1,0,+1\}$. (The minimality of this alphabet has been proved by Ch.Frougny.)

Algorithm III combines Algorithm II with Algorithm A and Algorithm B, in the following way:

notation:

- Input: $x = \sum_j x_j \tau^j$, $y = \sum_j y_j \tau^j$; digits $x_j, y_j \in \mathcal{A} = \{-1, 0, +1\}$
- Output: $z = x + y = \sum_{j} z_{j} \tau^{j}$; digits $z_{j} \in \mathcal{A} = \{-1, 0, +1\}$

Now we compile the methods explained earlier into the final Algorithm III which carries out parallel addition in base τ with the minimal possible alphabet $\mathcal{A} = \{-1,0,+1\}$. (The minimality of this alphabet has been proved by Ch.Frougny.)

Algorithm III combines Algorithm II with Algorithm A and Algorithm B, in the following way:

notation:

- Input: $x = \sum_j x_j \tau^j$, $y = \sum_j y_j \tau^j$; digits $x_j, y_j \in \mathcal{A} = \{-1, 0, +1\}$
- Output: $z = x + y = \sum_{j} z_{j} \tau^{j}$; digits $z_{j} \in \mathcal{A} = \{-1, 0, +1\}$

steps:

• Phase 0.: for each j put $w_j := x_j + y_j$

Now we compile the methods explained earlier into the final Algorithm III which carries out parallel addition in base τ with the minimal possible alphabet $\mathcal{A} = \{-1,0,+1\}$. (The minimality of this alphabet has been proved by Ch.Frougny.)

Algorithm III combines Algorithm II with Algorithm A and Algorithm B, in the following way:

notation:

- Input: $x = \sum_j x_j \tau^j$, $y = \sum_j y_j \tau^j$; digits $x_j, y_j \in \mathcal{A} = \{-1, 0, +1\}$
- Output: $z = x + y = \sum_{j} z_{j} \tau^{j}$; digits $z_{j} \in \mathcal{A} = \{-1, 0, +1\}$

- Phase 0.: for each j put $w_i := x_i + y_i$
- Phase 1.: for each j put $w_{2j}^{new} := w_{2j} + w_{2j-1} w_{2j+1}, \ w_{2j+1}^{new} := 0$

Now we compile the methods explained earlier into the final Algorithm III which carries out parallel addition in base τ with the minimal possible alphabet $\mathcal{A} = \{-1,0,+1\}$. (The minimality of this alphabet has been proved by Ch.Frougny.)

Algorithm III combines Algorithm II with Algorithm A and Algorithm B, in the following way:

notation:

- Input: $x = \sum_j x_j \tau^j$, $y = \sum_j y_j \tau^j$; digits $x_j, y_j \in \mathcal{A} = \{-1, 0, +1\}$
- Output: $z = x + y = \sum_{j} z_{j} \tau^{j}$; digits $z_{j} \in \mathcal{A} = \{-1, 0, +1\}$

- Phase 0.: for each j put $w_j := x_j + y_j$
- Phase 1.: for each j put $w_{2j}^{new} := w_{2j} + w_{2j-1} w_{2j+1}, \ w_{2j+1}^{new} := 0$
- Phase 2.: apply Algorithm II

Now we compile the methods explained earlier into the final Algorithm III which carries out parallel addition in base τ with the minimal possible alphabet $\mathcal{A} = \{-1,0,+1\}$. (The minimality of this alphabet has been proved by Ch.Frougny.)

Algorithm III combines Algorithm II with Algorithm A and Algorithm B, in the following way:

notation:

- Input: $x = \sum_j x_j \tau^j$, $y = \sum_j y_j \tau^j$; digits $x_j, y_j \in \mathcal{A} = \{-1, 0, +1\}$
- Output: $z = x + y = \sum_{j} z_{j} \tau^{j}$; digits $z_{j} \in \mathcal{A} = \{-1, 0, +1\}$

- Phase 0.: for each j put $w_j := x_j + y_j$
- Phase 1.: for each j put $w_{2j}^{new} := w_{2j} + w_{2j-1} w_{2j+1}, \ w_{2j+1}^{new} := 0$
- Phase 2.: apply Algorithm II
- Phase 3.: apply Algorithm A

Now we compile the methods explained earlier into the final Algorithm III which carries out parallel addition in base τ with the minimal possible alphabet $\mathcal{A} = \{-1,0,+1\}$. (The minimality of this alphabet has been proved by Ch.Frougny.)

Algorithm III combines Algorithm II with Algorithm A and Algorithm B, in the following way:

notation:

- Input: $x = \sum_j x_j \tau^j$, $y = \sum_j y_j \tau^j$; digits $x_j, y_j \in \mathcal{A} = \{-1, 0, +1\}$
- Output: $z = x + y = \sum_{j} z_{j} \tau^{j}$; digits $z_{j} \in \mathcal{A} = \{-1, 0, +1\}$

- Phase 0.: for each j put $w_j := x_j + y_j$
- Phase 1.: for each j put $w_{2j}^{new} := w_{2j} + w_{2j-1} w_{2j+1}, \ w_{2j+1}^{new} := 0$
- Phase 2.: apply Algorithm II
- Phase 3.: apply Algorithm A
- Phase 4.: apply Algorithm B

All Phases 0.-4. maintain the total value x+y of the τ -representation, only the digits are being transformed as needed.

• We start from $x_j, y_j \in \mathcal{A} = \{-1, 0, +1\}$

- We start from $x_j, y_j \in \mathcal{A} = \{-1, 0, +1\}$
- After Phase 0.: $w_i \in \{-2, -1, 0, +1, +2\}, w = x + y;$

- We start from $x_j, y_j \in \mathcal{A} = \{-1, 0, +1\}$
- After Phase 0.: $w_i \in \{-2, -1, 0, +1, +2\}, w = x + y$;
- After Phase 1.: $w_{2i} \in \{-6, \dots, 0, \dots, +6\}$ and $w_{2i+1} = 0$

- We start from $x_j, y_j \in \mathcal{A} = \{-1, 0, +1\}$
- After Phase 0.: $w_i \in \{-2, -1, 0, +1, +2\}, w = x + y$;
- After Phase 1.: $w_{2i} \in \{-6, \dots, 0, \dots, +6\}$ and $w_{2i+1} = 0$
- After Phase 2.: $w_{2j} \in \{-3, \dots, 0, \dots, +3\}$ and $w_{2j+1} = 0$

- We start from $x_j, y_j \in \mathcal{A} = \{-1, 0, +1\}$
- After Phase 0.: $w_i \in \{-2, -1, 0, +1, +2\}, w = x + y;$
- After Phase 1.: $w_{2j} \in \{-6, \dots, 0, \dots, +6\}$ and $w_{2j+1} = 0$
- After Phase 2.: $w_{2j} \in \{-3, \dots, 0, \dots, +3\}$ and $w_{2j+1} = 0$
- After Phase 3.: $w_{2i} \in \{-2, -1, 0, +1, +2\}$ and $w_{2i+1} = 0$

- We start from $x_j, y_j \in \mathcal{A} = \{-1, 0, +1\}$
- After Phase 0.: $w_i \in \{-2, -1, 0, +1, +2\}, w = x + y;$
- After Phase 1.: $w_{2j} \in \{-6, \dots, 0, \dots, +6\}$ and $w_{2j+1} = 0$
- After Phase 2.: $w_{2j} \in \{-3, \dots, 0, \dots, +3\}$ and $w_{2j+1} = 0$
- After Phase 3.: $w_{2j} \in \{-2, -1, 0, +1, +2\}$ and $w_{2j+1} = 0$
- After Phase 4.: $z_j \in \mathcal{A} = \{-1, 0, +1\}$

All Phases 0.-4. maintain the total value x+y of the τ -representation, only the digits are being transformed as needed.

- We start from $x_j, y_j \in \mathcal{A} = \{-1, 0, +1\}$
- After Phase 0.: $w_j \in \{-2, -1, 0, +1, +2\}, w = x + y;$
- After Phase 1.: $w_{2j} \in \{-6, \dots, 0, \dots, +6\}$ and $w_{2j+1} = 0$
- After Phase 2.: $w_{2j} \in \{-3, \dots, 0, \dots, +3\}$ and $w_{2j+1} = 0$
- After Phase 3.: $w_{2j} \in \{-2, -1, 0, +1, +2\}$ and $w_{2j+1} = 0$
- After Phase 4.: $z_j \in \mathcal{A} = \{-1, 0, +1\}$

Link between the numeration systems with base τ and Fibonacci:

All Phases 0.-4. maintain the total value x+y of the τ -representation, only the digits are being transformed as needed.

- We start from $x_j, y_j \in \mathcal{A} = \{-1, 0, +1\}$
- After Phase 0.: $w_i \in \{-2, -1, 0, +1, +2\}, w = x + y;$
- After Phase 1.: $w_{2j} \in \{-6, \dots, 0, \dots, +6\}$ and $w_{2j+1} = 0$
- After Phase 2.: $w_{2j} \in \{-3, \dots, 0, \dots, +3\}$ and $w_{2j+1} = 0$
- After Phase 3.: $w_{2i} \in \{-2, -1, 0, +1, +2\}$ and $w_{2i+1} = 0$
- After Phase 4.: $z_j \in A = \{-1, 0, +1\}$

Link between the numeration systems with base τ and Fibonacci:

• All methods developed here for the numeration system with base τ are derived only from the basic equality / rewriting rule $\tau^2 = \tau + 1$.

All Phases 0.-4. maintain the total value x+y of the τ -representation, only the digits are being transformed as needed.

- We start from $x_j, y_j \in \mathcal{A} = \{-1, 0, +1\}$
- After Phase 0.: $w_i \in \{-2, -1, 0, +1, +2\}, w = x + y;$
- After Phase 1.: $w_{2j} \in \{-6, \dots, 0, \dots, +6\}$ and $w_{2j+1} = 0$
- After Phase 2.: $w_{2j} \in \{-3, \dots, 0, \dots, +3\}$ and $w_{2j+1} = 0$
- After Phase 3.: $w_{2i} \in \{-2, -1, 0, +1, +2\}$ and $w_{2i+1} = 0$
- After Phase 4.: $z_j \in A = \{-1, 0, +1\}$

Link between the numeration systems with base τ and Fibonacci:

- All methods developed here for the numeration system with base τ are derived only from the basic equality / rewriting rule $\tau^2 = \tau + 1$.
- The same rewriting rule holds for the Fibonacci numeration system too, because $F_{i+2} = F_{i+1} + F_i$.

All Phases 0.-4. maintain the total value x+y of the τ -representation, only the digits are being transformed as needed.

- We start from $x_j, y_j \in \mathcal{A} = \{-1, 0, +1\}$
- After Phase 0.: $w_j \in \{-2, -1, 0, +1, +2\}, w = x + y;$
- After Phase 1.: $w_{2j} \in \{-6, \dots, 0, \dots, +6\}$ and $w_{2j+1} = 0$
- After Phase 2.: $w_{2j} \in \{-3, \dots, 0, \dots, +3\}$ and $w_{2j+1} = 0$
- After Phase 3.: $w_{2i} \in \{-2, -1, 0, +1, +2\}$ and $w_{2i+1} = 0$
- After Phase 4.: $z_j \in A = \{-1, 0, +1\}$

Link between the numeration systems with base τ and Fibonacci:

- All methods developed here for the numeration system with base τ are derived only from the basic equality / rewriting rule $\tau^2 = \tau + 1$.
- The same rewriting rule holds for the Fibonacci numeration system too, because $F_{i+2} = F_{i+1} + F_i$.
- So all the algorithms valid for base τ work in the same way also for Fibonacci; we just need to modify the formulas for several last positions (j = 0, 1, 2) at the end of the Fibonacci representations.

Konec

TAK TO JE VŠECHNO, MILÉ DĚTIČKY...

30 / 30

Konec

TAK TO JE VŠECHNO, MILÉ DĚTIČKY...

... A TEĎ UŽ PĚKNĚ DO PRÁCE...

Konec

TAK TO JE VŠECHNO, MILÉ DĚTIČKY...

... A TEĎ UŽ PĚKNĚ DO PRÁCE...

... ANEBO RADŠI NA OBÍDEK !!