S-adic conjecture

November 2, 2010

S-adic sequence

Let a be a letter of a finite alphabet \mathcal{A} and $S=\left\{\sigma_{0}, \sigma_{1}, \ldots, \sigma_{m-1}\right\}$ be a finite set of morphisms $\sigma_{k}: \mathcal{A}_{k} \rightarrow \mathcal{A}^{*}$ with $\mathcal{A}_{k} \subset \mathcal{A}$.
An infinite word \mathbf{u} over \mathcal{A} is an S-adic sequence if there is a sequence $\left(\sigma_{i_{j}}\right)_{j \geq 0}$ of morphisms from S, such that

$$
\mathbf{u}=\lim _{n \rightarrow \infty} \sigma_{i_{0}} \sigma_{i_{1}} \sigma_{i_{2}} \cdots \sigma_{i_{n}}(\text { aaa } \cdots) \quad \text { in } \mathcal{A}^{\mathbb{N}}
$$

Any word is an S-adic sequence

Theorem (Cassaigne)
Any infinite word is an S-adic sequence for $\# S=\# \mathcal{A}+1$.

A Sturmian S-adic sequence

$$
\sigma_{0}=\left\{\begin{array}{l}
0 \mapsto 0 \\
1 \mapsto 01
\end{array} \quad \sigma_{1}=\left\{\begin{array}{l}
0 \mapsto 1 \\
1 \mapsto 10
\end{array}\right.\right.
$$

A Sturmian S-adic sequence

$$
\sigma_{0}=\left\{\begin{array}{l}
0 \mapsto 0 \\
1 \mapsto 01
\end{array} \quad \sigma_{1}=\left\{\begin{array}{l}
0 \mapsto 1 \\
1 \mapsto 10
\end{array}\right.\right.
$$

Any sequence

$$
\mathbf{u}=\lim _{n \rightarrow \infty} \sigma_{i_{0}} \sigma_{i_{1}} \sigma_{i_{2}} \cdots \sigma_{i_{n}}(000 \cdots)
$$

is a Sturmian word.

A Sturmian S-adic sequence

$$
\sigma_{0}=\left\{\begin{array}{l}
0 \mapsto 0 \\
1 \mapsto 01
\end{array} \quad \sigma_{1}=\left\{\begin{array}{l}
0 \mapsto 1 \\
1 \mapsto 10
\end{array}\right.\right.
$$

Any sequence

$$
\mathbf{u}=\lim _{n \rightarrow \infty} \sigma_{i_{0}} \sigma_{i_{1}} \sigma_{i_{2}} \cdots \sigma_{i_{n}}(000 \cdots) .
$$

is a Sturmian word.
In fact, any Kneading sequence of an irrational α can be written in this form, where $\left(i_{j}\right)_{j \geq 0}$ is determined by the coefficients of the continuous fraction of α.

S-adic Sturmian sequences

Result from: Berthé, Holton, Zamboni, Initial powers of Sturmian sequences. Acta Arith. 122(4):315-347, 2006.
Any Sturmian word is S-adic for $S=\left\{\tau_{0}, \tau_{0}^{\prime}, \tau_{1}, \tau_{1}^{\prime}\right\}$ where
$\tau_{0}=\left\{\begin{array}{l}0 \mapsto 0 \\ 1 \mapsto 01\end{array} \quad \tau_{0}^{\prime}=\left\{\begin{array}{l}0 \mapsto 0 \\ 1 \mapsto 10\end{array} \tau_{1}=\left\{\begin{array}{l}0 \mapsto 10 \\ 1 \mapsto 1\end{array} \tau_{1}^{\prime}=\left\{\begin{array}{l}0 \mapsto 01 \\ 1 \mapsto 1 .\end{array}\right.\right.\right.\right.$

S-adic Sturmian sequences

Result from: Berthé, Holton, Zamboni, Initial powers of Sturmian sequences. Acta Arith. 122(4):315-347, 2006.
Any Sturmian word is S-adic for $S=\left\{\tau_{0}, \tau_{0}^{\prime}, \tau_{1}, \tau_{1}^{\prime}\right\}$ where
$\tau_{0}=\left\{\begin{array}{l}0 \mapsto 0 \\ 1 \mapsto 01\end{array} \quad \tau_{0}^{\prime}=\left\{\begin{array}{l}0 \mapsto 0 \\ 1 \mapsto 10\end{array} \quad \tau_{1}=\left\{\begin{array}{l}0 \mapsto 10 \\ 1 \mapsto 1\end{array} \quad \tau_{1}^{\prime}=\left\{\begin{array}{l}0 \mapsto 01 \\ 1 \mapsto 1 .\end{array}\right.\right.\right.\right.$
If the Sturmian word corresponds to a line $\alpha x+\rho$, the order of the substitutions is given by the coefficients of the continued fraction of α and by the Ostrowski expansion of ρ.

Sub-linear complexity

Given $\mathbf{u}=u_{0} u_{1} u_{2} \cdots$, any word $u_{i} u_{i+1} \cdots u_{i+n-1}$ is a factor of length $n \in \mathbb{N}$.
The (factor) complexity $\mathbf{o f} \mathbf{u}$ is the function
$\mathcal{C}_{\mathbf{u}}(n)=$ number of factors of \mathbf{u} of length n.

Sub-linear complexity

Given $\mathbf{u}=u_{0} u_{1} u_{2} \cdots$, any word $u_{i} u_{i+1} \cdots u_{i+n-1}$ is a factor of length $n \in \mathbb{N}$.
The (factor) complexity $\mathbf{o f} \mathbf{u}$ is the function
$\mathcal{C}_{\mathbf{u}}(n)=$ number of factors of \mathbf{u} of length n.
An (aperiodic) infinite word \mathbf{u} has a sub-linear complexity if $\mathcal{C}_{\mathbf{u}}(n) \leq$ an for some $a \in \mathbb{R}$.

Sub-linear complexity

Given $\mathbf{u}=u_{0} u_{1} u_{2} \cdots$, any word $u_{i} u_{i+1} \cdots u_{i+n-1}$ is a factor of length $n \in \mathbb{N}$.
The (factor) complexity of \mathbf{u} is the function
$\mathcal{C}_{\mathbf{u}}(n)=$ number of factors of \mathbf{u} of length n.
An (aperiodic) infinite word \mathbf{u} has a sub-linear complexity if $\mathcal{C}_{\mathbf{u}}(n) \leq$ an for some $a \in \mathbb{R}$.

Example

Words with sub-linear complexity: Sturmian words, Arnoux-Rauzy words, fixed point of primitive or uniform substitutions, ...

S-adic conjecture itself

The S-conjecture is the existence of a (reasonable) condition C such that
" \mathbf{u} has a sub-linear complexity if and only if \mathbf{u} is S-adic for S satisfying C".

Cassaigne' result

Result from: J. Cassaigne, Special factors of sequences with linear subword complexity. Developments in language theory, II (Magdeburg, 1995), 25-34, World Sci. Publishing, Singapore, 1996.

Theorem

A word \mathbf{u} has a sub-linear complexity if and only if the first difference of complexity $\mathcal{C}_{\mathbf{u}}(n+1)-\mathcal{C}_{\mathbf{u}}(n)$ is bounded.

Linearly recurrent words - part 1

A word w is a return word of z in \mathbf{u} if $w z$ is a factor of \mathbf{u}, z is a prefix of $w z$ and $w z$ contains exactly two occurrences of z.

Linearly recurrent words - part 1

A word w is a return word of z in \mathbf{u} if $w z$ is a factor of \mathbf{u}, z is a prefix of $w z$ and $w z$ contains exactly two occurrences of z.

An infinite word \mathbf{u} is linearly recurrent if any factor z occurs infinitely many times and there is $K \in \mathbb{N}$ such that for any return word w of z we have $|w| \leq K|z|$.

Linearly recurrent words - part 2

Let u be an S-adic sequence generated by a sequence of morphisms $\sigma_{0} \sigma_{1} \sigma_{3} \cdots$ such that $\sigma_{n}: \mathcal{A}_{n+1} \rightarrow \mathcal{A}_{n}^{*}$; \mathbf{u} is called primitive S-adic sequence if there exists $s_{0} \in \mathbb{N}$ such that for all r, all $b \in \mathcal{A}_{r}$ and all $c \in \mathcal{A}_{r+s_{0}+1}$ the letter b occurs in $\sigma_{r+1} \sigma_{r+2} \cdots \sigma_{r+s_{0}}(c)$.

Linearly recurrent words - part 2

Let u be an S-adic sequence generated by a sequence of morphisms $\sigma_{0} \sigma_{1} \sigma_{3} \cdots$ such that $\sigma_{n}: \mathcal{A}_{n+1} \rightarrow \mathcal{A}_{n}^{*}$; \mathbf{u} is called primitive S-adic sequence if there exists $s_{0} \in \mathbb{N}$ such that for all r, all $b \in \mathcal{A}_{r}$ and all $c \in \mathcal{A}_{r+s_{0}+1}$ the letter b occurs in $\sigma_{r+1} \sigma_{r+2} \cdots \sigma_{r+s_{0}}(c)$.
A morphism $\sigma: \mathcal{A} \rightarrow \mathcal{B}^{*}$ is proper, if there exist two letters $r, I \in \mathcal{B}$ such that $\sigma(a)=I w_{a} r, w_{a} \in \mathcal{B}^{*}$, for all $a \in \mathcal{A}$. An S-adic sequence \mathbf{u} is proper, if the morphisms from S are proper.

Linearly recurrent words - part 3

Result from: F. Durand, Corrigendum and addendum to 'Linearly recurrent subshifts have a finite number of non-periodic factors'. Ergod. Th. \& Dynam. Sys. (2003), 23, 663-669.

Theorem
An infinite word \mathbf{u} is linearly recurrent if and only if it is a primitive and proper S-adic sequence.

Linearly recurrent words - part 3

Result from: F. Durand, Corrigendum and addendum to 'Linearly recurrent subshifts have a finite number of non-periodic factors'. Ergod. Th. \& Dynam. Sys. (2003), 23, 663-669.

Theorem

An infinite word \mathbf{u} is linearly recurrent if and only if it is a primitive and proper S-adic sequence.

Question
A fixed point of a morphism is linearly recurrent if and only if what?

Arnoux-Rauzy words over three letter alphabet

Arnoux-Rauzy words over three letter alphabet $\{0,1,2\}$, i.e., with complexity $2 n+1$: all n-segments of the corresponding Rauzy graphs are of the form

$$
\sigma_{i_{0}} \sigma_{i_{1}} \cdots \sigma_{i_{k}}(a)
$$

for some $k \in \mathbb{N}$ and $a, i_{j} \in\{0,1,2\}$ with

$$
\sigma_{0}=\left\{\begin{array}{l}
0 \mapsto 0 \\
1 \mapsto 10 \\
2 \mapsto 20
\end{array} \quad \sigma_{1}=\left\{\begin{array}{l}
0 \mapsto 01 \\
1 \mapsto 1 \\
3 \mapsto 21
\end{array} \quad \sigma_{2}=\left\{\begin{array}{l}
0 \mapsto 02 \\
1 \mapsto 12 \\
2 \mapsto 2
\end{array}\right.\right.\right.
$$

Sufficient condition for sub-linearity - part 1

Proposition

Let \mathcal{A} be a finite alphabet, a be a letter of $\mathcal{A},\left(\sigma_{n}: \mathcal{A}_{n+1} \rightarrow \mathcal{A}_{n}^{*}\right)_{n \in \mathbb{N}}$ be a sequence of morphisms with $\mathcal{A}_{n} \subset \mathcal{A}, a \in \cap_{n} \mathcal{A}_{n}$ and

$$
\mathbf{u}=\lim _{n \rightarrow \infty} \sigma_{0} \sigma_{1} \cdots \sigma_{n}(\text { aaa } \cdots) .
$$

Suppose moreover that

$$
\lim _{n \rightarrow \infty} \inf _{c \in \mathcal{A}_{n+1}}\left|\sigma_{0} \sigma_{1} \cdots \sigma_{n}(c)\right|=\infty
$$

and there exists a constant D such that

$$
\frac{\left|\sigma_{0} \sigma_{1} \cdots \sigma_{n} \sigma_{n+1}(b)\right|}{\left|\sigma_{0} \sigma_{1} \cdots \sigma_{n}(c)\right|} \leq D
$$

for all $b \in \mathcal{A}_{n+2}, c \in \mathcal{A}_{n+1}$ and $n \in \mathbb{N}$. Then $\mathcal{C}_{\mathbf{u}}(n) \leq D(\# \mathcal{A})^{2} n$.

Sufficient condition for sub-linearity - part 2

Corollary
Let \mathcal{A} be a finite alphabet, a be a letter of $\mathcal{A},\left(\sigma_{n}: \mathcal{A} \rightarrow \mathcal{A}^{*}\right)_{n \in \mathbb{N}}$ be a sequence of k-uniform morphisms with $k>1$. Then

$$
\mathbf{u}=\lim _{n \rightarrow \infty} \sigma_{0} \sigma_{1} \cdots \sigma_{n}(\text { aaa } \cdots)
$$

has a sub-linear complexity $\mathcal{C}_{\mathbf{u}}(n) \leq k(\# \mathcal{A})^{2} n$.

(Sort of) necessary condition for sub-linearity

Result from: S. Ferenczi, Rank and symbolic complexity. Ergod. Th. \& Dynam. Sys. (1996), 16, 663-682.

Theorem

Let u be a uniformly recurrent word over \mathcal{A} with sub-linear complexity. There exists a finite number of morphisms $\sigma_{0}, \sigma_{1}, \ldots, \sigma_{m-1}$ over $\mathcal{B}=\{0,1, \ldots, d-1\}$, an application α from \mathcal{B} to \mathcal{A} and an infinite sequence $\left(i_{j}\right)_{j \geq 0}$ from $\{0,1, \ldots, m-1\}^{\mathbb{N}}$ such that

$$
\lim _{n \rightarrow \infty} \inf _{c \in \mathcal{B}}\left|\sigma_{i_{0}} \sigma_{i_{1}} \cdots \sigma_{i_{n}}(c)\right|=\infty
$$

and any factor of \mathbf{u} is a factor of $\alpha \sigma_{i_{0}} \sigma_{i_{1}} \cdots \sigma_{i_{n}}(0)$ for some n.

Restriction to fixed points

What is the condition C_{1} such that
"an infinite (aperiodic) fixed point of a morphism has a sub-linear complexity if and only if the morphism satisfies C_{1} ".

Sufficient condition for sub-linearity - part 1

Given a morphism σ. The growth function of a letter a is

$$
h_{a}(n)=\left|\sigma^{n}(a)\right|
$$

Theorem (Salomaa et al.)
For a non-erasing morphism σ over \mathcal{A} and any $a \in \mathcal{A}$, there exist an integer $e_{a} \geq 0$ and an algebraic real number ρ_{a} such that

$$
h_{a}(n)=\Theta\left(n^{e_{a}} \rho_{a}^{n}\right)
$$

Sufficient condition for sub-linearity - part 1

Given a morphism σ. The growth function of a letter a is

$$
h_{a}(n)=\left|\sigma^{n}(a)\right|
$$

Theorem (Salomaa et al.)
For a non-erasing morphism σ over \mathcal{A} and any $a \in \mathcal{A}$, there exist an integer $e_{a} \geq 0$ and an algebraic real number ρ_{a} such that

$$
h_{a}(n)=\Theta\left(n^{e_{a}} \rho_{a}^{n}\right)
$$

a is bounded if $h_{a}(n)$ is bounded.

Sufficient condition for sub-linearity - part 2

$$
h_{a}(n)=\Theta\left(n^{e_{a}} \rho_{\mathrm{a}}^{n}\right)
$$

Definition

A morphism σ over \mathcal{A} is said to be

- non-growing if there is a bounded letter in \mathcal{A}
- u-exponential if $\rho_{a}=\rho_{b}>1, e_{a}=e_{b}=0$ for all $a, b \in \mathcal{A}$,
- p-exponential if $\rho_{a}=\rho_{b}>1$ for all $a, b \in \mathcal{A}$ and $e_{c}>0$ for some $c \in \mathcal{A}$
- e-exponential if $\rho_{a}>1$ for all $a \in \mathcal{A}$ and $\rho_{b}>\rho_{c}$ for some $b, c \in \mathcal{A}$.

Sufficient condition for sub-linearity - part 3

Theorem (Ehrenfeucht, Lee, Rozenberg, Pansiot)

Let $\mathbf{u}=\sigma^{\omega}(a)$ be an infinite aperiodic word of factor complexity $\mathcal{C}(n)$.

- If σ is growing, then $\mathcal{C}(n)$ is either $\Theta(n),(n \log \log n)$ or ($n \log n$), depending on whether σ is u-, p - or e-exponential, resp.
- If σ is not-growing, then either
a) u has arbitrarily large factors over the set of bounded letters (i.e., σ is pushy) and then $\mathcal{C}(n)=\Theta\left(n^{2}\right)$ or
b) \mathbf{u} has finitely many factors over the set of bounded letters and then $\mathcal{C}(n)$ can be any of $\Theta(n), \Theta(n \log \log n)$ or $\Theta(n \log n)$.

Necessary condition - wanted

It seems that all examples of fixed points with the non-sub-linear complexity contains unbounded powers of words, i.e., the critical exponent is infinite. Such words are called repetitive.
Theorem (Ehrenfeucht, Rozenberg (1983))
It is decidable whether a fixed point of a morphism is repetitive. Any repetitive fixed point \mathbf{u} is strongly repetitive, i.e., there is a word w such that w^{n} is a factor of \mathbf{u} for any n.

