
What is it? Related results The case #S = 1

S-adic conjecture

November 2, 2010



What is it? Related results The case #S = 1

S-adic sequence

Let a be a letter of a finite alphabet A and S = {σ0, σ1, . . . , σm−1}
be a finite set of morphisms σk : Ak → A∗ with Ak ⊂ A.

An infinite word u over A is an S-adic sequence if there is a
sequence (σij )j≥0 of morphisms from S, such that

u = lim
n→∞

σi0σi1σi2 · · ·σin (aaa · · · ) in AN.
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Any word is an S-adic sequence

Theorem (Cassaigne)
Any infinite word is an S-adic sequence for #S = #A+ 1.
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A Sturmian S-adic sequence

σ0 =

{
0 7→ 0
1 7→ 01

σ1 =

{
0 7→ 1
1 7→ 10

Any sequence

u = lim
n→∞

σi0σi1σi2 · · ·σin (000 · · · ).

is a Sturmian word.
In fact, any Kneading sequence of an irrational α can be written in
this form, where (ij)j≥0 is determined by the coefficients of the
continuous fraction of α.
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S-adic Sturmian sequences

Result from: Berthé, Holton, Zamboni, Initial powers of Sturmian
sequences. Acta Arith. 122(4):315–347, 2006.

Any Sturmian word is S-adic for S = {τ0, τ
′
0, τ1, τ

′
1} where

τ0 =

{
0 7→ 0
1 7→ 01

τ ′0 =

{
0 7→ 0
1 7→ 10

τ1 =

{
0 7→ 10
1 7→ 1

τ ′1 =

{
0 7→ 01
1 7→ 1.

If the Sturmian word corresponds to a line αx + ρ, the order of the
substitutions is given by the coefficients of the continued fraction
of α and by the Ostrowski expansion of ρ.
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Sub-linear complexity

Given u = u0u1u2 · · · , any word uiui+1 · · · ui+n−1 is a factor of
length n ∈ N.
The (factor) complexity of u is the function

Cu(n) = number of factors of u of length n.

An (aperiodic) infinite word u has a sub-linear complexity if
Cu(n) ≤ an for some a ∈ R.

Example
Words with sub-linear complexity: Sturmian words, Arnoux-Rauzy
words, fixed point of primitive or uniform substitutions, . . .
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S-adic conjecture itself

The S-conjecture is the existence of a (reasonable) condition C
such that

“ u has a sub-linear complexity if and only if u is S-adic for
S satisfying C”.



What is it? Related results The case #S = 1

Cassaigne’ result

Result from: J. Cassaigne, Special factors of sequences with linear
subword complexity. Developments in language theory, II
(Magdeburg, 1995), 25–34, World Sci. Publishing, Singapore,
1996.

Theorem
A word u has a sub-linear complexity if and only if the first
difference of complexity Cu(n + 1)− Cu(n) is bounded.
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Linearly recurrent words – part 1

A word w is a return word of z in u if wz is a factor of u, z is a prefix
of wz and wz contains exactly two occurrences of z.

An infinite word u is linearly recurrent if any factor z occurs infinitely
many times and there is K ∈ N such that for any return word w of z
we have |w | ≤ K |z|.
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Linearly recurrent words – part 2

Let u be an S-adic sequence generated by a sequence of
morphisms σ0σ1σ3 · · · such that σn : An+1 → A∗n; u is called
primitive S-adic sequence if there exists s0 ∈ N such that for all r ,
all b ∈ Ar and all c ∈ Ar+s0+1 the letter b occurs in
σr+1σr+2 · · ·σr+s0(c).

A morphism σ : A → B∗ is proper, if there exist two letters r , l ∈ B
such that σ(a) = lwar ,wa ∈ B∗, for all a ∈ A. An S-adic sequence u
is proper, if the morphisms from S are proper.
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Linearly recurrent words – part 3

Result from: F. Durand, Corrigendum and addendum to ‘Linearly
recurrent subshifts have a finite number of non-periodic factors’.
Ergod. Th. & Dynam. Sys. (2003), 23, 663–669.

Theorem
An infinite word u is linearly recurrent if and only if it is a primitive
and proper S-adic sequence.

Question
A fixed point of a morphism is linearly recurrent if and only if
what ?.
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Arnoux-Rauzy words over three letter alphabet

Arnoux-Rauzy words over three letter alphabet {0,1,2}, i.e., with
complexity 2n + 1: all n-segments of the corresponding Rauzy
graphs are of the form

σi0σi1 · · ·σik (a)

for some k ∈ N and a, ij ∈ {0,1,2} with

σ0 =


0 7→ 0
1 7→ 10
2 7→ 20

σ1 =


0 7→ 01
1 7→ 1
3 7→ 21

σ2 =


0 7→ 02
1 7→ 12
2 7→ 2

.
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Sufficient condition for sub-linearity – part 1

Proposition
Let A be a finite alphabet, a be a letter of A, (σn : An+1 → A∗n)n∈N
be a sequence of morphisms with An ⊂ A, a ∈ ∩nAn and

u = lim
n→∞

σ0σ1 · · ·σn(aaa · · · ).

Suppose moreover that

lim
n→∞

inf
c∈An+1

|σ0σ1 · · ·σn(c)| =∞

and there exists a constant D such that

|σ0σ1 · · ·σnσn+1(b)|
|σ0σ1 · · ·σn(c)|

≤ D

for all b ∈ An+2, c ∈ An+1 and n ∈ N. Then Cu(n) ≤ D(#A)2n.
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Sufficient condition for sub-linearity – part 2

Corollary
Let A be a finite alphabet, a be a letter of A, (σn : A → A∗)n∈N be a
sequence of k-uniform morphisms with k > 1. Then

u = lim
n→∞

σ0σ1 · · ·σn(aaa · · · ).

has a sub-linear complexity Cu(n) ≤ k(#A)2n.
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(Sort of) necessary condition for sub-linearity

Result from: S. Ferenczi, Rank and symbolic complexity. Ergod.
Th. & Dynam. Sys. (1996), 16, 663–682.

Theorem
Let u be a uniformly recurrent word over A with sub-linear
complexity. There exists a finite number of morphisms
σ0, σ1, . . . , σm−1 over B = {0,1, . . . ,d − 1}, an application α from B
to A and an infinite sequence (ij)j≥0 from {0,1, . . . ,m − 1}N such
that

lim
n→∞

inf
c∈B
|σi0σi1 · · ·σin (c)| =∞

and any factor of u is a factor of ασi0σi1 · · ·σin (0) for some n.
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Restriction to fixed points

What is the condition C1 such that

“an infinite (aperiodic) fixed point of a morphism has a
sub-linear complexity if and only if the morphism
satisfies C1”.
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Sufficient condition for sub-linearity – part 1

Given a morphism σ. The growth function of a letter a is

ha(n) = |σn(a)|

Theorem (Salomaa et al.)
For a non-erasing morphism σ over A and any a ∈ A, there exist
an integer ea ≥ 0 and an algebraic real number ρa such that

ha(n) = Θ(neaρn
a) .

a is bounded if ha(n) is bounded.
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Sufficient condition for sub-linearity – part 2

ha(n) = Θ(neaρn
a)

Definition
A morphism σ over A is said to be
• non-growing if there is a bounded letter in A
• u-exponential if ρa = ρb > 1,ea = eb = 0 for all a,b ∈ A,
• p-exponential if ρa = ρb > 1 for all a,b ∈ A and ec > 0 for

some c ∈ A
• e-exponential if ρa > 1 for all a ∈ A and ρb > ρc for some

b, c ∈ A.
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Sufficient condition for sub-linearity – part 3

Theorem (Ehrenfeucht, Lee, Rozenberg, Pansiot)
Let u = σω(a) be an infinite aperiodic word of factor complexity
C(n).
• If σ is growing, then C(n) is either Θ(n), (n log log n) or

(n log n), depending on whether σ is u-, p- or e-exponential,
resp.

• If σ is not-growing, then either
a) u has arbitrarily large factors over the set of bounded letters

(i.e., σ is pushy) and then C(n) = Θ(n2) or
b) u has finitely many factors over the set of bounded letters and

then C(n) can be any of Θ(n),Θ(n log log n) or Θ(n log n).
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Necessary condition – wanted

It seems that all examples of fixed points with the non-sub-linear
complexity contains unbounded powers of words, i.e., the critical
exponent is infinite. Such words are called repetitive.

Theorem (Ehrenfeucht, Rozenberg (1983))
It is decidable whether a fixed point of a morphism is repetitive.
Any repetitive fixed point u is strongly repetitive, i.e., there is a word
w such that wn is a factor of u for any n.
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