Infinite words with finite defect

Ľ. Balková & E. Pelantová & Š. Starosta

19.10.2010

Outline

Overview of finite defects

- Basic definitions
- Equivalent characterizations of words with finite defect

2 Classes P_{ret} and P

- Class P_{ret}
- Class P
- P_{ret} , P and questions ...

Outline

Overview of finite defects

- Basic definitions
- Equivalent characterizations of words with finite defect

2 Classes P_{ret} and P

- Class P_{ret}
- Class P
- *P_{ret}*, *P* and questions ...

Defect of finite words

- Droubay, Justin, Pirillo 2001: any finite word w contains at most |w| + 1 palindromes
- number of distinct palindromes in w
 - = number of prefixes of *w* with a unioccurrent longest palindromic suffix (lps)
 - = number of suffixes of *w* with a unioccurrent longest palindromic prefix

Definition

w is rich if w contains |w| + 1 distinct palindromes

Definition (Brlek 2004)

- zero defect = richness
- D(w) = number of prefixes of w with a non-unioccurrent lps

Defect of finite words

- Droubay, Justin, Pirillo 2001: any finite word w contains at most |w| + 1 palindromes
- number of distinct palindromes in w
 - = number of prefixes of w with a unioccurrent longest palindromic suffix (lps)
 - = number of suffixes of *w* with a unioccurrent longest palindromic prefix

Definition

w is rich if w contains |w| + 1 distinct palindromes

Definition (Brlek 2004)

- zero defect = richness
- D(w) = number of prefixes of w with a non-unioccurrent lps

Defect of finite words

- Droubay, Justin, Pirillo 2001: any finite word w contains at most |w| + 1 palindromes
- number of distinct palindromes in w
 - = number of prefixes of *w* with a unioccurrent longest palindromic suffix (lps)
 - = number of suffixes of *w* with a unioccurrent longest palindromic prefix

Definition

w is rich if w contains |w| + 1 distinct palindromes

Definition (Brlek 2004)

- zero defect = richness
- D(w) = number of prefixes of w with a non-unioccurrent lps

Defect of finite words

- Droubay, Justin, Pirillo 2001: any finite word w contains at most |w| + 1 palindromes
- number of distinct palindromes in w
 - = number of prefixes of *w* with a unioccurrent longest palindromic suffix (lps)
 - = number of suffixes of *w* with a unioccurrent longest palindromic prefix

Definition

w is rich if w contains |w| + 1 distinct palindromes

Definition (Brlek 2004)

- zero defect = richness
- D(w) = number of prefixes of w with a non-unioccurrent lps

Defect of finite words

- Droubay, Justin, Pirillo 2001: any finite word w contains at most |w| + 1 palindromes
- number of distinct palindromes in w
 - = number of prefixes of *w* with a unioccurrent longest palindromic suffix (lps)
 - = number of suffixes of *w* with a unioccurrent longest palindromic prefix

Definition

w is rich if w contains |w| + 1 distinct palindromes

Definition (Brlek 2004)

- zero defect = richness
- D(w) = number of prefixes of w with a non-unioccurrent lps

Defect of finite words

- Droubay, Justin, Pirillo 2001: any finite word w contains at most |w| + 1 palindromes
- number of distinct palindromes in w
 - = number of prefixes of *w* with a unioccurrent longest palindromic suffix (lps)
 - = number of suffixes of *w* with a unioccurrent longest palindromic prefix

Definition

w is rich if w contains |w| + 1 distinct palindromes

Definition (Brlek 2004)

defect of w D(w) = |w| + 1 - number of distinct palindromes in w

zero defect = richness

• D(w) = number of prefixes of w with a non-unioccurrent lps

Defect of finite words

- Droubay, Justin, Pirillo 2001: any finite word w contains at most |w| + 1 palindromes
- number of distinct palindromes in w
 - = number of prefixes of *w* with a unioccurrent longest palindromic suffix (lps)
 - = number of suffixes of *w* with a unioccurrent longest palindromic prefix

Definition

w is rich if w contains |w| + 1 distinct palindromes

Definition (Brlek 2004)

- zero defect = richness
- D(w) = number of prefixes of w with a non-unioccurrent lps

Definition

u infinite is *rich* if any of its factors (prefixes) w contains |w| + 1 palindromes

• w factor of
$$v \Rightarrow D(w) \le D(v)$$

Definition

defect of an infinite word \mathbf{u} $D(\mathbf{u}) = \sup\{D(w) \mid w \text{ is a factor (prefix) of } \mathbf{u}\}$

Definition

u infinite is *rich* if any of its factors (prefixes) w contains |w| + 1 palindromes

• w factor of
$$v \Rightarrow D(w) \le D(v)$$

Definition

defect of an infinite word \mathbf{u} $D(\mathbf{u}) = \sup\{D(w) \mid w \text{ is a factor (prefix) of } \mathbf{u}\}$

Definition

u infinite is *rich* if any of its factors (prefixes) w contains |w| + 1 palindromes

• w factor of
$$v \Rightarrow D(w) \le D(v)$$

Definition

defect of an infinite word \mathbf{u} $D(\mathbf{u}) = \sup\{D(w) \mid w \text{ is a factor (prefix) of } \mathbf{u}\}$

Definition

u infinite is *rich* if any of its factors (prefixes) w contains |w| + 1 palindromes

• w factor of
$$v \Rightarrow D(w) \le D(v)$$

Definition

defect of an infinite word \mathbf{u} $D(\mathbf{u}) = \sup\{D(w) \mid w \text{ is a factor (prefix) of } \mathbf{u}\}$

Theorem

- 💶 u is rich,
- complete return words of palindromic factors are palindromes,
- any prefix of u has a unioccurrent lps,
- $\mathcal{P}(n+1) + \mathcal{P}(n) = \mathcal{C}(n+1) \mathcal{C}(n) + 2$ for all $n \in \mathbb{N}$.

Theorem

- 💶 u is rich,
- **2** complete return words of palindromic factors are palindromes,
- any prefix of u has a unioccurrent lps,
- $\mathcal{P}(n+1) + \mathcal{P}(n) = \mathcal{C}(n+1) \mathcal{C}(n) + 2$ for all $n \in \mathbb{N}$.

Theorem

- 💶 u is rich,
- 2 complete return words of palindromic factors are palindromes,
- 3 any prefix of u has a unioccurrent lps,
- $\mathcal{P}(n+1) + \mathcal{P}(n) = \mathcal{C}(n+1) \mathcal{C}(n) + 2$ for all $n \in \mathbb{N}$.

Theorem

- 💶 u is rich,
- 2 complete return words of palindromic factors are palindromes,
- 3 any prefix of u has a unioccurrent lps,
- $\mathcal{P}(n+1) + \mathcal{P}(n) = \mathcal{C}(n+1) \mathcal{C}(n) + 2$ for all $n \in \mathbb{N}$.

Proposition

 $\begin{array}{l} D(\mathbf{u}) \geq \\ \#\{\{v, \overline{v}\} \mid v \neq \overline{v} \And v \text{ or } \overline{v} \text{ complete return word of a palindrome}\} \end{array}$

$\{v, \overline{v}\}$ is oddity

Example

 $\mathbf{u} = (abcabcacbacb)^{\omega}, \ D(\mathbf{u}) = 4$, but number of oddities 3

Theorem

Proposition

 $\begin{array}{l} D(\mathbf{u}) \geq \\ \#\{\{v, \overline{v}\} \mid v \neq \overline{v} \And v \text{ or } \overline{v} \text{ complete return word of a palindrome} \} \end{array}$

$\{v,\overline{v}\}$ is oddity

Example

$$\mathbf{u} = (abcabcacbacb)^{\omega}, \ D(\mathbf{u}) = 4$$
, but number of oddities 3

Theorem

Proposition

 $\begin{array}{l} D(\mathbf{u}) \geq \\ \#\{\{v, \overline{v}\} \mid v \neq \overline{v} \And v \text{ or } \overline{v} \text{ complete return word of a palindrome} \} \end{array}$

 $\{v,\overline{v}\}$ is oddity

Example

$$\mathbf{u} = (abcabcacbacb)^{\omega}$$
, $D(\mathbf{u}) = 4$, but number of oddities 3

Theorem

Proposition

 $\begin{array}{l} D(\mathbf{u}) \geq \\ \#\{\{v, \overline{v}\} \mid v \neq \overline{v} \And v \text{ or } \overline{v} \text{ complete return word of a palindrome} \} \end{array}$

 $\{v,\overline{v}\}$ is oddity

Example

$$\mathbf{u} = (abcabcacbacb)^{\omega}, \ D(\mathbf{u}) = 4$$
, but number of oddities 3

Theorem

Equivalent characterizations of words with finite defect

Theorem

Let u be a uniformly recurrent word containing ∞ palindromes. The following statements are equivalent:

• $D(\mathbf{u}) < +\infty$,

- **2 u** has a finite number of oddities,
- there exists an integer K such that all complete return words of any palindrome of u of length at least K are palindromes,
- there exists an integer H such that for any prefix f of **u** with $|f| \ge H$ lps of f is unioccurrent in f,
- there exists an integer N such that

 $\mathcal{P}(n) + \mathcal{P}(n+1) = \mathcal{C}(n+1) - \mathcal{C}(n) + 2 \text{ for all } n \geq N.$

It coincides for K = H = N = 0 with definitions of rich words!

Equivalent characterizations of words with finite defect

Theorem

Let u be a uniformly recurrent word containing ∞ palindromes. The following statements are equivalent:

• $D(\mathbf{u}) < +\infty$,

- **2 u** has a finite number of oddities,
- there exists an integer K such that all complete return words of any palindrome of u of length at least K are palindromes,
- there exists an integer H such that for any prefix f of **u** with $|f| \ge H$ lps of f is unioccurrent in f,
- there exists an integer N such that

 $\mathcal{P}(n) + \mathcal{P}(n+1) = \mathcal{C}(n+1) - \mathcal{C}(n) + 2$ for all $n \ge N$.

It coincides for K = H = N = 0 with definitions of rich words!

Rich infinite words recalled

Theorem

- 💶 u is rich,
- 2 complete return words of palindromic factors are palindromes,
- 3 any prefix of u has a unioccurrent lps,
- $\mathcal{P}(n+1) + \mathcal{P}(n) = \mathcal{C}(n+1) \mathcal{C}(n) + 2$ for all n.

Outline

Overview of finite defects

- Basic definitions
- Equivalent characterizations of words with finite defect

2 Classes P_{ret} and P

- Class P_{ret}
- Class P
- P_{ret}, P and questions ...

Class P_{ret}

Definition

We say that a morphism $\varphi : \mathcal{B}^* \mapsto \mathcal{A}^*$ is of class P_{ret} if there exists a palindrome $p \in \mathcal{A}^*$ such that

- $\varphi(b)p$ is a palindrome for any $b\in \mathcal{B}$,
- φ(b)p contains exactly 2 distinct occurrences of p, one as a prefix and one as a suffix, for any b ∈ B,
- $\varphi(b) \neq \varphi(c)$ for all $b, c \in \mathcal{B}, \ b \neq c$.

Example

Let $\mathcal{A} = \mathcal{B} = \{0, 1\}$) and p = 010. The morphism $\varphi : 0 \rightarrow 01011, 1 \rightarrow 01$ is of class P_{ret} .

Class P_{ret}

Definition

We say that a morphism $\varphi : \mathcal{B}^* \mapsto \mathcal{A}^*$ is of class P_{ret} if there exists a palindrome $p \in \mathcal{A}^*$ such that

- $\varphi(b)p$ is a palindrome for any $b\in \mathcal{B}$,
- φ(b)p contains exactly 2 distinct occurrences of p, one as a prefix and one as a suffix, for any b ∈ B,
- $\varphi(b) \neq \varphi(c)$ for all $b, c \in \mathcal{B}, \ b \neq c$.

Example

Let $\mathcal{A} = \mathcal{B} = \{0, 1\}$) and p = 010. The morphism $\varphi : 0 \rightarrow 01011, 1 \rightarrow 01$ is of class P_{ret} .

Let φ be of class P_{ret} , then

- $\textcircled{0} \hspace{0.1 cm} \varphi \hspace{0.1 cm} \text{is injective,} \hspace{0.1 cm}$
- 3 $\overline{arphi(x)p}=arphi(\overline{x})p$ for any $x\in\mathcal{B}^*$,
- $\textcircled{0} \hspace{0.1 cm} arphi(s)
 ho$ is a palindrome if and only if $s \in \mathcal{B}^{st}$ is a palindrome.

- Let φ be of class P_{ret} , then
 - ${f 0}~arphi$ is injective,
 - $\ \ \, {\overline{\varphi(x)p}}=\varphi(\overline{x})p \ \, {\rm for \ any} \ \, x\in \mathcal B^*,$
 - $\textcircled{0} \hspace{0.1 cm} arphi(s)
 ho$ is a palindrome if and only if $s \in \mathcal{B}^{st}$ is a palindrome.

Let φ be of class P_{ret} , then

- $\bigcirc \varphi$ is injective,
- $\ \ \, {\overline{\varphi(x)p}}=\varphi(\overline{x})p \ \, {\rm for \ any} \ \, x\in \mathcal B^*,$
- **③** $\varphi(s)p$ is a palindrome if and only if $s \in \mathcal{B}^*$ is a palindrome.

Let φ be of class P_{ret} , then

 $\textcircled{0} \hspace{0.1 cm} \varphi \hspace{0.1 cm} \text{is injective,} \hspace{0.1 cm}$

2
$$\overline{arphi(x) p} = arphi(\overline{x}) p$$
 for any $x \in \mathcal{B}^*$,

3 $\varphi(s)p$ is a palindrome if and only if $s \in \mathcal{B}^*$ is a palindrome.

Relation with finite defects

Theorem

Let $\mathbf{u} \in \mathcal{A}^{\mathbb{N}}$ be a uniformly recurrent word with finite defect. Then there exist a rich word $\mathbf{v} \in \mathcal{B}^{\mathbb{N}}$ and a morphism $\varphi : \mathcal{B}^* \mapsto \mathcal{A}^*$ of class P_{ret} such that

$$\mathbf{u}=\varphi(\mathbf{v}).$$

The word \mathbf{v} is uniformly recurrent.

The converse in not true: there exist an infinite word **u** with finite defect and a morphism φ of class P_{ret} such that $D(\varphi(\mathbf{u})) = +\infty$.

Note: $D(arphi(\mathbf{u}))$ depends on arphi as well as on \mathbf{u} .

Relation with finite defects

Theorem

Let $\mathbf{u} \in \mathcal{A}^{\mathbb{N}}$ be a uniformly recurrent word with finite defect. Then there exist a rich word $\mathbf{v} \in \mathcal{B}^{\mathbb{N}}$ and a morphism $\varphi : \mathcal{B}^* \mapsto \mathcal{A}^*$ of class P_{ret} such that

$$\mathbf{u}=\varphi(\mathbf{v}).$$

The word \mathbf{v} is uniformly recurrent.

The converse in not true: there exist an infinite word **u** with finite defect and a morphism φ of class P_{ret} such that $D(\varphi(\mathbf{u})) = +\infty$.

Note: $D(\varphi(\mathbf{u}))$ depends on φ as well as on \mathbf{u} .

Relation with finite defects

Theorem

Let $\mathbf{u} \in \mathcal{A}^{\mathbb{N}}$ be a uniformly recurrent word with finite defect. Then there exist a rich word $\mathbf{v} \in \mathcal{B}^{\mathbb{N}}$ and a morphism $\varphi : \mathcal{B}^* \mapsto \mathcal{A}^*$ of class P_{ret} such that

$$\mathbf{u}=\varphi(\mathbf{v}).$$

The word \mathbf{v} is uniformly recurrent.

The converse in not true: there exist an infinite word **u** with finite defect and a morphism φ of class P_{ret} such that $D(\varphi(\mathbf{u})) = +\infty$.

Note: $D(\varphi(\mathbf{u}))$ depends on φ as well as on \mathbf{u} .

Definition (Hof, Knill and Simon (1995))

A morphism φ is of class P if there exist a palindrome p and for every letter a there exists a palindrome q_a such that $\varphi(a) = pq_a$.

Example

Let p=00 and $\varphi:0\rightarrow001\rightarrow001001$ is of class P but not of class $P_{ret}.$

Definition (Glen et al., 2008)

A morphism φ of class P is **special** if

- $lacksymbol{0}$ all arphi(a) end with different letters,
- Whenever φ(a)p occurs in some φ(y₁y₂...y_n)p, then this occurrence is φ(y_m)p for some m with 1 ≤ m ≤ n.

Definition (Hof, Knill and Simon (1995))

A morphism φ is of class P if there exist a palindrome p and for every letter a there exists a palindrome q_a such that $\varphi(a) = pq_a$.

Example

Let p=00 and $\varphi:0 \to 001 \to 001001$ is of class P but not of class $P_{ret}.$

Definition (Glen et al., 2008)

A morphism φ of class P is **special** if

- ${ f 0}$ all arphi(a) end with different letters,
- Whenever φ(a)p occurs in some φ(y₁y₂...y_n)p, then this occurrence is φ(y_m)p for some m with 1 ≤ m ≤ n.

Definition (Hof, Knill and Simon (1995))

A morphism φ is of class P if there exist a palindrome p and for every letter a there exists a palindrome q_a such that $\varphi(a) = pq_a$.

Example

Let p=00 and $\varphi:0 \to 001 \to 001001$ is of class P but not of class $P_{ret}.$

Definition (Glen et al., 2008)

A morphism φ of class P is **special** if

- **1** all $\varphi(a)$ end with different letters,
- Whenever φ(a)p occurs in some φ(y₁y₂...y_n)p, then this occurrence is φ(y_m)p for some m with 1 ≤ m ≤ n.

Definition

A morphism σ is **conjugate** to a morphism θ if there exists $w \in A^*$ such that for all $a \in A$ we have $\sigma(a)w = w\theta(a)$.

Definition

A morphism **is of class** P' if it is conjugate to a morphism of class P. A morphism of class P' is **special** if it is conjugate to a special morphism of class P.

Theorem (Glen et al., 2008)

Suppose $\mathbf{v} = \sigma(\mathbf{u})$ where σ is a special morphism of class P'. Then

 $D(\mathbf{v}) = 0 \Leftrightarrow D(\mathbf{u}) = 0.$

Definition

A morphism σ is **conjugate** to a morphism θ if there exists $w \in A^*$ such that for all $a \in A$ we have $\sigma(a)w = w\theta(a)$.

Definition

A morphism is of class P' if it is conjugate to a morphism of class P. A morphism of class P' is special if it is conjugate to a special morphism of class P.

Theorem (Glen et al., 2008)

Suppose $\mathbf{v} = \sigma(\mathbf{u})$ where σ is a special morphism of class P'. Then

 $D(\mathbf{v}) = 0 \Leftrightarrow D(\mathbf{u}) = 0.$

Definition

A morphism σ is **conjugate** to a morphism θ if there exists $w \in A^*$ such that for all $a \in A$ we have $\sigma(a)w = w\theta(a)$.

Definition

A morphism **is of class** P' if it is conjugate to a morphism of class P. A morphism of class P' is **special** if it is conjugate to a special morphism of class P.

Theorem (Glen et al., 2008)

Suppose $\mathbf{v} = \sigma(\mathbf{u})$ where σ is a special morphism of class P'. Then

 $D(\mathbf{v}) = 0 \Leftrightarrow D(\mathbf{u}) = 0.$

Definition

A morphism σ is **conjugate** to a morphism θ if there exists $w \in A^*$ such that for all $a \in A$ we have $\sigma(a)w = w\theta(a)$.

Definition

A morphism **is of class** P' if it is conjugate to a morphism of class P. A morphism of class P' is **special** if it is conjugate to a special morphism of class P.

Theorem (Glen et al., 2008)

Suppose $\mathbf{v} = \sigma(\mathbf{u})$ where σ is a special morphism of class P'. Then

 $D(\mathbf{v}) = \mathbf{0} \Leftrightarrow D(\mathbf{u}) = \mathbf{0}.$

Proposition

If φ is a morphism of class $P_{\rm ret}$, then φ is conjugate to a morphism of class P.

Proposition

Let **u** be a binary uniformly recurrent word such that $D(\mathbf{u})$ is finite. Let φ be a morphism of class P_{ret} . Then $D(\varphi(\mathbf{u}))$ is finite.

Thus, special P' is not the maximal class to preserve finite defect.

Proposition

If φ is a morphism of class $P_{\rm ret}$, then φ is conjugate to a morphism of class P.

Proposition

Let **u** be a binary uniformly recurrent word such that $D(\mathbf{u})$ is finite. Let φ be a morphism of class P_{ret} . Then $D(\varphi(\mathbf{u}))$ is finite.

Thus, special P' is not the maximal class to preserve finite defect.

- Subclass of P_{ret} where the converse of Theorem 7 holds?
- Olass preserving rich words?
- Olass preserving words with finite defect?

Thank you.