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STURMIAN JUNGLE (OR GARDEN?) ON MULTILITERAL ALPHABETSL'ubomíra Balková, Edita Pelantová and �t¥pán Starosta1Abstrat. The properties haraterizing Sturmian words are onsidered for words on mul-tiliteral alphabets. We summarize various generalizations of Sturmian words to multiliteralalphabets and enlarge the list of known relationships among these generalizations. We providea new equivalent de�nition of rih words and make use of it in the study of generalizationsof Sturmian words based on palindromes. We also ollet many examples of in�nite words toillustrate di�erenes in the generalized de�nitions of Sturmian words.1991 Mathematis Subjet Classi�ation. 68R15.1. IntrodutionSturmian words, i.e., aperiodi words with the lowest fator omplexity, appeared �rst in the paper ofHedlund and Morse in 1940. Sine then Sturmian words have been in the enter of interest of many math-ematiians and the number of disoveries of new properties and onnetions keeps growing. The harmof Sturmian words onsists in their natural appearane while studying diverse problems. Many equiva-lent de�nitions have been found that way. Sturmian words are binary and every property haraterizingSturmian words asks for a fruitful extension to an analogy on a larger alphabet. Well-known examples ofsuh e�orts are Arnoux-Rauzy words, words oding interval exhange transformations, or billiard words.All these words belong to well established lasses and their desriptions and properties an be found inmany works [5, 6, 11, 27, 35, 40, 46℄. An overview of some generalizations of Sturmian words is providedin [12℄ and [50℄.The aim of this paper is to attrat attention to other generalizations of Sturmian words. Our motivationstems from reent results on palindromes in in�nite words that have ended in the de�nition of words rihin palindromes, the de�nition of defet, the desription of a relation between fator and palindromiomplexity, et. [3, 7, 15℄. Impulses for suh an intensive researh of palindromes ome onededly fromthe artile [22℄ whih haraterizes Sturmian words by palindromes, the artile [23℄ whih investigatesthe number of palindromes in pre�xes of in�nite words and last, but not least, the disovery of the role ofpalindromes in desription of the spetrum of Shrödinger operators with aperiodi potentials [31℄. Whilegeneralizing Sturmian words we have taken into onsideration the haraterization of Sturmian words byreturn words from [49℄ and a reent de�nition of Abelian omplexity [42, 43℄, whih is losely onnetedwith balane properties.We onsider the following properties (k denotes the ardinality of alphabet A):(1) Property C:the fator omplexity of u satis�es C(n) = (k − 1)n + 1 for all n ∈ N.(2) Property LR:

u ontains one left speial and one right speial fator of every length.Keywords and phrases: Sturmian words, generalizations of Sturmian words, palindromes, rih words
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2 TITLE WILL BE SET BY THE PUBLISHER(3) Property BO:all bispeial fators of u are ordinary.(4) Property R:any fator of u has exatly k return words.(5) Property P :the palindromi omplexity of u satis�es P(n) + P(n + 1) = k + 1 for all n ∈ N.(6) Property PE:every palindrome has a unique palindromi extension in u.(7) Balane properties:(a) Property B∀:
u is aperiodi and for all a ∈ A and for all fators w, v ∈ L(u) with |w| = |v| it holds

||w|a − |v|a| ≤ k − 1.(b) Property B∃:
u is aperiodi and there exists a ∈ A suh that for all fators w, v ∈ L(u) with |w| = |v| itholds

||w|a − |v|a| ≤ k − 1.() Property AC:
u is aperiodi and the abelian omplexity of u satis�es AC(n) = k for all n ∈ N, n ≥ 1.All properties are equivalent on a binary alphabet and they haraterize Sturmian words. No twoof them are equivalent on the set of in�nite words over a multiliteral alphabet. The non-equivalene isshown by ounterexamples. However some properties imply others, or it an be shown that a oupleof properties are equivalent on a ertain lass of in�nite words. For instane, on the lass of uniformlyreurrent ternary words Properties R and BO are equivalent.There exist more equivalent de�nitions of Sturmian words, for instane the de�nition based on balaneproperties of subfators of fators [25℄, on the index of an in�nite word [37℄, or Rihomme's harateristisof Sturmian words [41℄. We do not pay attention to these de�nitions in our survey.The paper is organized as follows. In setion 2 we reall the notions playing an important role in thede�nitions of Properties 1 through 7. We reall the notion of substitution whih is irrelevant for thegeneralizations of Sturmian words but is used to onstrut most of examples of in�nite words. Setion 3is foused on the study of palindromes in in�nite words: we summarize older and new results onerningpalindromes, we de�ne palindromi branhes. A new result in this setion is Theorem 10 providing a newharaterization of rih words by means of bilateral orders. Setion 4 shortly summarizes essential resultson Sturmian words. Setion 5 is devoted to an overview of known relations among di�erent generalizationsof Sturmian words, mostly from artiles [7, 9, 16, 30, 42, 43℄. New results are in Theorems 21 and 25, andCorollaries 23 and 24. The last setion is a brief summary of seleted relations and examples illustratingthe studied Properties. 2. Notation and definitionsBy A we denote a �nite set of symbols, usually alled letters; the set A is therefore alled an alphabet.A �nite string w = w0w1 . . . wn−1 of letters of A is said to be a �nite word, its length is denoted by

|w| = n. Finite words over A together with the operation of onatenation and the empty word ε as theneutral element form a free monoid A∗. The map
w = w0w1 . . . wn−1 7→ w̃ = wn−1wn−2 . . . w0is a bijetion on A∗, the word w̃ is alled the reversal or the mirror image of w. A word w whih oinideswith its mirror image is a palindrome.Under an in�nite word u over the alphabet A we understand an in�nite string u = u0u1u2 . . . of lettersfrom A suh that every letter of A ours in u. We all an in�nite word u eventually periodi if there



TITLE WILL BE SET BY THE PUBLISHER 3exist �nite words w, v suh that u = wvω , where ω means `repeated in�nitely many times'. If w = ε,then u is said to be (purely) periodi. If u is not eventually periodi, then we all u aperiodi.A �nite word w is a fator of a word v (�nite or in�nite) if there exist words p and s suh that v = pws.If p = ε, then w is said to be a pre�x of v, if s = ε, then w is a su�x of v. We say that a pre�x or a su�xis proper if it is not equal to the word itself.The language L(u) of an in�nite word u is the set of all its fators. The fators of u of length n formthe set denoted by Ln(u). Using this notation, we may write L(u) = ∪n∈NLn(u).We say that the language L(u) is losed under reversal if L(u) ontains with every fator w also itsreversal w̃.An in�nite word u over A is alled c-balaned if for every a ∈ A and for every pair of fators w, vof u of the same length |w| = |v|, we have ||w|a − |v|a| ≤ c, where |w|a means the number of letters
a ontained in w. Note that in the ase of a binary alphabet, say A = {0, 1}, this ondition may berewritten in a simpler way: an in�nite word u is c-balaned, if for every pair of fators w, v of u with
|w| = |v|, we have ||w|0 − |v|0| ≤ c. We all 1-balaned words simply balaned.We say that two words w, v ∈ A∗ are abelian equivalent if for eah letter a ∈ A, it holds |w|a = |v|a.It is easy to see that the abelian equivalene de�nes indeed an equivalene relation on A∗. If A =
{a1, a2, . . . , ak}, then the Parikh vetor assoiated with the word w ∈ A∗ is de�ned as

Ψ(w) = (|w|a1
, |w|a2

, . . . , |w|ak
).We all abelian omplexity (as de�ned in [42℄) of an in�nite word u the funtion AC : N → N given by

AC(n) = #{Ψ(w)
∣∣ w ∈ Ln(u)}.For any fator w ∈ L(u), there exists an index i suh that w is a pre�x of the in�nite word

uiui+1ui+2 . . .. Suh an index i is alled an ourrene of w in u. If eah fator of u has at leasttwo ourrenes in u, the in�nite word u is said to be reurrent. It an be easily shown that eah fatorof a reurrent word ours in�nitely many times. It is readily seen that if the language of u is losedunder reversal, then u is reurrent. The in�nite word u is said to be uniformly reurrent if for any fator
w of u the distanes between suessive ourrenes of w form a bounded sequene.Let j, k, j < k, be two suessive ourrenes of a fator w in u. Then ujuj+1 . . . uk−1 is alled a returnword of w. Return words were �rst studied in [24℄ and [32℄. The set of all return words of w is denotedby R(w),

R(w) = {ujuj+1 . . . uk−1 | j, k being suessive ourrenes of w in u}.If v is a return word of w, then the word vw is alled a omplete return word of w. It is obvious that anin�nite reurrent word is uniformly reurrent if and only if the set of return words of any of its fators is�nite.The (fator) omplexity of an in�nite word u is the map C : N 7→ N, de�ned by C(n) = #Ln(u). Todetermine the inrement of omplexity, one has to ount the possible extensions of fators of length n.A left extension of w ∈ L(u) is any letter a ∈ A suh that aw ∈ L(u). The set of all left extensions ofa fator w will be denoted by Lext(w). We will mostly deal with reurrent in�nite words u. In this ase,any fator of u has at least one left extension. A fator w is alled left speial (or LS for short) if w hasat least two left extensions. Clearly, any pre�x of a LS fator is LS as well. It makes therefore sense tode�ne an in�nite LS branh whih is an in�nite word whose all pre�xes are LS fators of u. Similarly,one an de�ne a right extension, a right speial (or RS) fator, Rext(w), and an in�nite RS branh whihis a left-sided in�nite word whose all su�xes are RS fators of u.We say that a fator w of u is a bispeial (or BS) fator if it is both RS and LS. The role of BS fatorsfor the omputation of omplexity an be niely illustrated on Rauzy graphs (introdued in [6℄).Let u be an in�nite word and n ∈ N. The Rauzy graph Γn of u is a direted graph whose set of vertiesis Ln(u) and set of edges is Ln+1(u). An edge e ∈ Ln+1(u) starts in the vertex w and ends in the vertex
v if w is a pre�x and v is a su�x of e, see Figure 1. If the word u is reurrent, the graph Γn is stronglyonneted for every n ∈ N, i.e., there exists a direted path from every vertex w to every vertex v of thegraph.
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t t-

w = w0w1 · · ·wn−1 v = w1 · · ·wn−1wn

e = w0w1 · · ·wn−1wnFigure 1. Inidene relation between an edge and verties in a Rauzy graph.If the language L(u) of the in�nite word u is losed under reversal, then the operation that to everyvertex w of the graph assoiates its mirror image, the vertex w̃, and to every edge e assoiates ẽ mapsthe Rauzy graph Γn onto itself.The outdegree (indegree) of a vertex w ∈ Ln(u) is the number of edges whih start (end) in w. Obviouslythe outdegree of w is equal to #Rext(w) and the indegree of w is #Lext(w). The sum of outdegrees overall verties is equal to the number of edges in every direted graph. Similarly, it holds for indegrees. Inpartiular, for the Rauzy graph Γn we have
∑

w∈Ln(u)

#Rext(w) = C(n + 1) =
∑

w∈Ln(u)

#Lext(w) .The �rst di�erene of omplexity ∆C(n) = C(n + 1) − C(n) is thus given by
∆C(n) =

∑

w∈Ln(u)

(
#Rext(w) − 1

)
=

∑

w∈Ln(u)

(
#Lext(w) − 1

)
.A non-zero ontribution to ∆C(n) in the left-hand sum is given only by those fators w ∈ Ln(u) forwhih #Rext(w) ≥ 2, and for reurrent words, a non-zero ontribution to ∆C(n) in the right-hand sumis provided only by those fators w ∈ Ln(u) for whih #Lext(w) ≥ 2. The last relation an be thusrewritten for reurrent words u as

∆C(n) =
∑

w∈Ln(u), w RS(
#Rext(w) − 1

)
=

∑

w∈Ln(u), w LS(
#Lext(w) − 1

)
.If we denote Bext(w) = {awb ∈ L(u)

∣∣ a, b ∈ A}, then the seond di�erene of omplexity ∆2C(n) =
∆C(n + 1) − ∆C(n) = C(n + 2) − 2C(n + 1) + C(n) is given by

∆2C(n) =
∑

w∈Ln(u)

(
#Bext(w) − #Rext(w) − #Lext(w) + 1

)
. (2.1)Denote by b(w) the quantity

b(w) := #Bext(w) − #Rext(w) − #Lext(w) + 1.The number b(w) is alled the bilateral order of the fator w and was introdued in [18℄. It is readilyseen that if w is not a BS fator, then b(w) = 0. Bispeial fators are distinguished aording to theirbilateral order in the following way
• if b(w) > 0, then w is a strong BS fator,
• if b(w) < 0, then w is a weak BS fator,
• if b(w) = 0 then w is an ordinary BS fator.A substitution on A is a morphism ϕ : A∗ → A∗ suh that there exists a letter a ∈ A and a non-empty word w ∈ A∗ satisfying ϕ(a) = aw and ϕ(b) 6= ε for all b ∈ A. Sine a morphism satis�es

ϕ(vw) = ϕ(v)ϕ(w) for all v, w ∈ A∗, any substitution is uniquely determined by the images of letters.Instead of lassial ϕ(a) = w, we sometimes write a → w. A substitution an be naturally extended toan in�nite word u = u0u1u2 . . . by the presription ϕ(u) = ϕ(u0)ϕ(u1)ϕ(u2) . . . An in�nite word u issaid to be a �xed point of the substitution ϕ if it ful�lls u = ϕ(u). It is obvious that every substitution ϕhas at least one �xed point, namely limn→∞ ϕn(a) (to be understood in the sense of produt topology).



TITLE WILL BE SET BY THE PUBLISHER 53. Words opulent in palindromesIn resemblane to the fator omplexity C(n) of an in�nite word u, let us de�ne the palindromiomplexity of u as the map P : N → N given by
P(n) = #{w ∈ Ln(u)| w = w̃}.If a ∈ A and w is a palindrome and awa ∈ L(u), then awa is said to be a palindromi extension of w.The set of all palindromi extensions of w is denoted by Pext(w).Similarly as in the ase of left speial and right speial branhes, one an de�ne a palindromi branhof u.De�nition 1. Let u be an in�nite word. A two-sided in�nite word v = . . . v3v2v1v1v2v3 . . . is a palin-dromi branh with enter ε of the word u if for every n ∈ N the word vnvn−1 . . . v2v1v1v2 . . . vn−1vn is afator of u. Let a be a letter. A two-sided in�nite word v = . . . v3v2v1av1v2v3 . . . is a palindromi branhwith enter a of the word u if for every n ∈ N the word vnvn−1 . . . v2v1av1v2 . . . vn−1vn is a fator of u.It follows from the König's theorem that if u has in�nitely many palindromes, then u has at least onepalindromi branh. In any Sturmian word on {0, 1} there exist exatly three palindromi branhes withenters ε, 0 and 1. See also Setion 5.1.Uniformly reurrent words ontaining in�nitely many distint palindromes satisfy that for any fator w,every su�iently large palindrome in u ontains w, thus suh a palindrome ontains w̃ as well. Asa onsequene, we have the following theorem.Theorem 2. If u is a uniformly reurrent word that ontains in�nitely many distint palindromes, thenits language L(u) is losed under reversal.The opposite impliation is not true as illustrated by the following example.Example 1 (uniform reurrene + language losed under reversal 6⇒ in�nitely many palindromes). Thein�nite word u on {a, b} (onstruted in [13℄) whose pre�xes un are given by the following reurrentformula

u0 = ab, un+1 = unabũn,is uniformly reurrent and its language is losed under reversal. However, u ontains only a �nite numberof palindromes.When we relax the ondition of uniform reurrene, the statement of Theorem 2 is not true any more.Example 2 (in�nitely many palindromes 6⇒ language losed under reversal). The in�nite word u on
{a, b, c} whose pre�xes un are given by the following reurrent formula

u0 = ε, un+1 = unabcn+1unis learly reurrent. In�nitely many palindromes are represented by the fators cn for every n. As thefator ba does not our, the set of fators is not losed under reversal. A similar example an be foundin [16℄.The word u may be reoded to a binary alphabet while preserving the mentioned properties. We mayfor instane reode u using the following mapping:
a → 0110, b → 1001, c → 1.An interesting relation between the palindromi and fator omplexity has been revealed in [7℄.Theorem 3. Let u be an in�nite word with the language losed under reversal. Then

P(n + 1) + P(n) ≤ ∆C(n) + 2 for all n ∈ N. (3.1)



6 TITLE WILL BE SET BY THE PUBLISHERIn fat, the above relation is stated in [7℄ for uniformly reurrent words, however the proof requiresonly reurrent words. Theorem 3 implies that in�nite words reahing the equality in (3.1) are in a ertainsense opulent in palindromes. Another measure of opulene in palindromes has been provided in [23℄.Theorem 4. Every �nite word w ontains at most |w| + 1 palindromes (inluding the empty word).De�nition 5. An in�nite word u satisfying that every fator w of u ontains |w| + 1 palindromes isalled rih in palindromes.The following equivalent de�nitions of rihness have been proved in [30℄, [16℄, [17℄, respetively.Theorem 6. For any in�nite word u the following onditions are equivalent:(1) u is rih,(2) any omplete return word of a palindromi fator of u is a palindrome,(3) for any fator w of u, every fator of u that ontains w only as its pre�x and w̃ only as its su�xis a palindrome,(4) eah fator of u is uniquely determined by its longest palindromi pre�x and its longest palindromisu�x.We will need for our further purposes an impliation that holds only for languages losed under reversal.Corollary 7 ( [16℄). Let u be a rih in�nite word with the language losed under reversal. Then for anyfator w of u, the ourrenes of w and w̃ alternate.A natural question is whether in�nite words reahing the equality in (3.1) oinide with rih words.The following theorem proved in [16℄ provides an answer.Theorem 8. Let u be an in�nite word with the language losed under reversal. Then u is rih if andonly if P(n + 1) + P(n) = ∆C(n) + 2 for all n ∈ N.Let us mention as an open problem the following question. �Does the equivalene of rihness and theequality in (3.1) hold for a larger lass than words with the language losed under reversal? For instanefor all reurrent words?�The following observations may serve as hints:
• It does not hold for non-reurrent in�nite words in general. The in�nite word abω is given in [16℄as an example of a rih non-reurrent in�nite word (with the language of ourse not losed underreversal), whih does not reah the equality in (3.1) for all n ∈ N.
• Notie that both rih in�nite words and in�nite words reahing the equality in (3.1) ontainin�nitely many palindromes.
• If u is rih and reurrent, then L(u) is losed under reversal (proved in [30℄, Proposition 2.11).The rest of this setion is devoted to the relation between rihness and bilateral orders of fators. Thefollowing proposition reveals some information on bilateral orders of palindromi bispeial fators in anin�nite word with the language losed under reversal.Proposition 9. Let u be an in�nite word whose language is losed under reversal. Then the bilateralorder b(w) of a palindromi bispeial fator w ∈ L(u) has a di�erent parity than the number of palindromiextensions of w.Proof. Let w be a palindromi BS fator of u. On one hand, as the language is losed under reversal, wehave #Lext(w) = #Rext(w). Consequently, from the de�nition of bilateral order one an see that theparity of #Bext(w) is di�erent from the parity of b(w). On the other hand, the parity of the number ofpalindromi extensions of w equals the parity of #Bext(w) sine for any a, b ∈ A, if awb ∈ L(u), then

bwa ∈ L(u). �In the sequel, we will state and prove a new equivalent de�nition of rih words by means of bilateralorders.Theorem 10. Let u be an in�nite word with the language losed under reversal. Then u is rih if andonly if any bispeial fator w of u satis�es:
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• if w is non-palindromi, then

b(w) = 0,

• if w is a palindrome, then
b(w) = #Pext(w) − 1.The following lemma will provide the most important tool for the proof of Theorem 10.Lemma 11. Let u be a rih in�nite word whose language is losed under reversal. Then it holds for anybispeial fator w:

• if w is non-palindromi, then
b(w) ≥ 0,

• if w is a palindrome, then
b(w) ≥ #Pext(w) − 1.Proof. Let w be a non-palindromi BS fator. By the de�nition of b(w), we want to prove

#Bext(w) ≥ #Rext(w) + #Lext(w) − 1.We will onstrut a bipartite oriented graph G having its set of verties V de�ned as
V = {wa|a ∈ Rext(w)} ∪ {w̃a|a ∈ Rext(w̃)} .There is an oriented edge from wa to w̃b if there exists a fator vb ∈ L(u) suh that wa is its pre�x, w̃bis its su�x and fators w and w̃ our eah exatly one in vb. Furthermore, there is an oriented edgefrom w̃x to wy if there exists a fator vy ∈ L(u) suh that w̃x is its pre�x, wy is its su�x and fators wand w̃ our eah exatly one in v.

t t-

w̃a wb

. . . | w̃ | a w︸ ︷︷ ︸
v

| b | . . .

t t-

wa w̃b

. . . | w | a w̃︸ ︷︷ ︸
v

| b | . . .

Figure 2. Inidene relation in the graph G.Due to Theorem 6, suh a fator v is a palindrome. Therefore the existene of an edge from wa to w̃bimplies aw̃b ∈ L(u), and so bwa ∈ L(u), too. Analogously, if there is an edge from w̃x to wy, we have
xwy ∈ L(u).By Corollary 7, the ourrenes of w and w̃ alternate. Thus, to any fator of u orresponds a path in
G. As u is reurrent, the graph G is strongly onneted.As a onsequene, the number of pairs of its verties whih are onneted by an edge is greater thanor equal to the number of its verties minus 1. We have

#Bext(w) ≥ #Rext(w) + #Rext(w̃) − 1.



8 TITLE WILL BE SET BY THE PUBLISHERSine Rext(w̃) = Lext(w) the proof of the �rst part is �nished.Let w be a palindromi BS fator. Let us onsider this time a graph G whose set of fators V is de�nedas
V = {wa|a ∈ Rext(w)} .There is an edge from wa to wb if there exists a fator vb ∈ L(u) suh that v is a omplete return wordto w that has wa as a pre�x. As u is rih, v is a palindrome. Due to the reurrene of u, for every

awb ∈ L(u), a 6= b, there exists an edge in G going from wa to wb. As the language is losed underreversal, the edge going from wb to wa is in G, too. Therefore
# {awb ∈ L(u)|a 6= b} = 2 × the number of pairs of distint verties onneted by an edge.Owing to the reurrene of u, the graph G is strongly onneted, thus the number of pairs of distintverties onneted by an edge is greater than or equal to the number of verties of G minus 1, whihequals #Rext(w) − 1. We �nd

#Bext(w) = # {awb ∈ L(u)|a 6= b} + #Pext(w) ≥ 2 (#Rext(w) − 1) + #Pext(w).As Rext(w) = Lext(w), the statement is proved. �Proof of Theorem 10. (⇐): Let us show by mathematial indution that
∆C(n) + 2 = P(n + 1) + P(n) for all n ∈ N.Sine L(u) is losed under reversal, this means by Theorem 8 that u is rih.The assumption on bilateral orders and the fat that non-bispeial palindromi fators have a uniquepalindromi extension guarantee the following equality for all n ∈ N:

∆2C(n) =
∑

w∈Ln(u)

b(w) =
∑

w∈Ln(u)
w=w̃

(#Pext(w) − 1) = P(n + 2) − P(n). (3.2)For n = 0, we an write ∆C(0)+2 = C(1)−C(0)+2 = #A+1. On the other hand we have P(1)+P(0) =
#A + 1.Take N ∈ N. Assume ∆C(n)+2 = P(n+1)+P(n) holds for all n < N . Using the indution assumptionand (3.2), we obtain

∆C(N) + 2 = (∆C(N) − ∆C(N − 1)) + (∆C(N − 1) + 2)
= ∆2C(N − 1) + (P(N − 1) + P(N))
= (P(N + 1) − P(N − 1)) + (P(N − 1) + P(N))
= P(N + 1) + P(N).

(⇒): Take n ∈ N arbitrary. We will prove the statement of the theorem for all BS fators of length n.As u is rih and the language L(u) is losed under reversal, we have by Theorem 8
∆C(k) + 2 = P(k + 1) + P(k) for all k ∈ N.Applying this equality, we will dedue the form of ∆2C(n).

∆2C(n) = (∆C(n + 1) + 2)−(∆C(n) + 2) = (P(n + 2) + P(n + 1))−(P(n + 1) + P(n)) = P(n+2)−P(n).Consequently, we obtain
∑

w∈Ln(u)

b(w) = ∆2C(n) = P(n + 2) − P(n) =
∑

w∈Ln(u)
w=w̃

(#Pext(w) − 1) .



TITLE WILL BE SET BY THE PUBLISHER 9Palindromi fators that are not BS have obviously exatly one palindromi extension. Thus, we anrewrite the previous equality
∑

w∈Ln(u)

b(w) =
∑

w∈Ln(u)
w=w̃,w BS (#Pext(w) − 1) . (3.3)Let us split the sum of bilateral orders into two parts and use Lemma 11

∑

w∈Ln(u)

b(w) =
∑

w∈Ln(u)
w 6=w̃, w BS b(w) +

∑

w∈Ln(u)
w=w̃, w BS b(w) ≥

∑

w∈Ln(u)
w 6=w̃, w BS b(w) +

∑

w∈Ln(u)
w=w̃, w BS (#Pext(w) − 1) . (3.4)This in ombination with (3.3) gives ∑

w∈Ln(u)
w 6=w̃, w BS b(w) = 0. By Lemma 11, bilateral orders of suh fatorsare non-negative, whih implies b(w) = 0 for all non-palindromi BS fators. Sine the equality is reahedin (3.4), we obtain ∑

w∈Ln(u)
w=w̃, w BS b(w) =

∑

w∈Ln(u)
w=w̃, w BS (#Pext(w) − 1) . Together with Lemma 11, this resultsin b(w) = #Pext(w) − 1 for all palindromi BS fators. �4. Equivalent definitions of Sturmian wordsLet us stress a lose link between periodiity and omplexity (revealed by Hedlund and Morse [38℄).On one hand, the omplexity of eventually periodi words is bounded. On the other hand, if there exists

n ∈ N suh that C(n) ≤ n, then the omplexity is bounded and the in�nite word u is eventually periodi.In onsequene, the omplexity of aperiodi words satis�es C(n) ≥ n + 1 for all n ∈ N. Sturmian wordsare de�ned as in�nite words with the omplexity C(n) = n+1 for all n ∈ N. This ondition on omplexityimplies many properties. Let us list some of them. If u is a Sturmian word, then u has the followingproperties:
• u is a binary word,
• u is aperiodi,
• the language L(u) is losed under reversal,
• the language L(u) ontains in�nitely many palindromes,
• the word u is uniformly reurrent,
• the language L(u) ontains no weak bispeial fators,
• u is rih.There exist many equivalent de�nitions of Sturmian words. The following theorem summarizes severalof their well-known ombinatorial haraterizations.Theorem 12. Let u be an in�nite word over the alphabet A. The properties listed below are equivalent:(i) u is Sturmian, i.e., C(n) = n + 1 for all n,(ii) u is binary and ontains a unique left speial fator of every length,(iii) u is binary, aperiodi and every bispeial fator is ordinary,(iv) any fator of u has exatly two return words,(v) u ontains one palindrome of every even length and two palindromes of every odd length,(vi) u is binary and every palindrome has a unique palindromi extension,(vii) u is aperiodi and balaned,(viii) u is aperiodi and AC(n) = 2 for all n ∈ N, n ≥ 1.The haraterization by return words is due to Vuillon [49℄ and the one by the abelian omplexityis a onsequene of the works by Coven and Hedlund [20℄. The equivalent de�nition based on the



10 TITLE WILL BE SET BY THE PUBLISHERbalane property omes already from Hedlund and Morse [39℄. The two equivalent properties onerningpalindromes have been proved by Droubay and Pirillo [22℄. Notie that the sixth property an beequivalently rewritten as
P(n) + P(n + 1) = 3 for all n ∈ N,and also as
P(n + 2) = P(n) for all n ∈ N.Let us reall that P(0) = 1 sine the empty word is onsidered to be a palindrome.5. Generalizations of Sturmian wordsWe have seen that Sturmian words an be de�ned in many equivalent ways. As a matter of ourse,various generalizations to multiliteral alphabets have been suggested and studied.5.1. Two well-known generalizationsThe most studied generalizations are Arnoux-Rauzy words and words oding k-interval exhangetransformation.Arnoux-Rauzy words (or AR words for simpliity) are in�nite words with the language losed underreversal and ontaining exatly one LS fator w of every length, and suh that every LS fator has thesame number k of left extensions, i.e., #Lext(w) = k. Their alphabet A has k letters sine the emptyword has exatly k left extensions. AR words are aperiodi and satisfy C(n) = (k − 1)n + 1 for all

n ∈ N. They have been de�ned and studied in [23℄, the following properties have been proved ibidem.The language of AR words ontains in�nitely many palindromes, they are uniformly reurrent, rih, andhave only ordinary BS fators. AR words form a sublass of extensively studied episturmian words (seefor instane [29℄), de�ned as in�nite words that have the language losed under reversal and ontain atmost one LS fator of every length.Another well-known generalization of Sturmian words is provided by words oding k-interval exhangetransformation. Let us state their de�nition and then explain why suh words generalize Sturmian wordsto k-letter alphabets. Take positive numbers α1, . . . , αk suh that ∑k

i=1 αi = 1. They de�ne a partitionof the interval I = [0, 1) into k subintervals
Ij =

[j−1∑

i=1

αi,

j∑

i=1

αi

)
, j ∈ {1, 2, . . . , k}.The interval exhange transformation is a bijetion T : I → I given by the presription

T (x) = x + cj for all x ∈ Ij , j ∈ {1, 2, . . . , k},where cj are suitably hosen onstants. Sine T is a bijetion, the intervals T (I1), T (I2), . . . , T (Ik) forma partition of I. The orders of T (Ij) in the partition de�ne a permutation π : {1, 2, . . . , k} → {1, 2, . . . , k}and this permutation π determines uniquely the onstants cj . For instane, if the permutation π issymmetri, i.e., π =
(

1 2 ... k−1 k
k k−1 ... 2 1

), then the transformation T is of the following form
T (x) = x +

∑

i>j

αi −
∑

i<j

αi for x ∈ Ij .The in�nite word u = u0u1u2 . . . over A = {a1, . . . , ak} assoiated with T is de�ned as
un := aj if T n(x) ∈ Ij



TITLE WILL BE SET BY THE PUBLISHER 11and is alled a word oding k-interval exhange transformation (k-iet word for short).From the point of view of ombinatoris on words, an important role is played by those transformationswhose orbit for an arbitrary x ∈ I is dense in I, i.e., the losure of {T n(x)
∣∣ n ∈ N} is the whole interval I.A su�ient ondition for this property represents the so-alled i.d.o.. (onsult [35℄) and the irreduibilityof the permutation π. In the sequel, let us assume that T satis�es both of these properties. The k-ietword is then uniformly reurrent, its language does not depend on the position of the starting point x,but only on the transformation T , its omplexity satis�es C(n) = (k − 1)n + 1 for all n ∈ N and no BSfator is weak.The language of the k-iet word u is losed under reversal if and only if the permutation π is symmetri.In suh a ase, the language L(u) ontains in�nitely many palindromes and, as shown in [7℄, the equalityin (3.1) is attained. Hene, aording to Theorem 8, the k-iet words are rih. It is easy to desribe thein�nite palindromi branhes for suh k-iet words. The one with the empty word as its enter is obtainedas the oding of the orbit {T n(x)|n ∈ Z} with the starting point x = 1/2 and the branh with the enter

aj ∈ A as the oding of the orbit with the starting point x =
∑

i<j αi + αj/2.The k-iet words provide a generalization of Sturmian words due to the well-known onnetion betweenSturmian and mehanial words [36℄.Theorem 13. Let u be an in�nite word. Then u is Sturmian if and only if u is a 2-iet word with anirrational partition of the unit interval.Reently, in [45℄, a di�erent generalization of Sturmian sequenes is onsidered. It in fat orrespondsto a speial sublass of k-iet words given by oding a trajetory in a regular 2n-gon.5.2. Combinatorial generalizationsLet us write down and baptize the generalizations of properties from Theorem 12. We will then referto them and study their relations. Let u be an in�nite word over the alphabet A. Denote k = #A.(1) Property C:the fator omplexity of u satis�es C(n) = (k − 1)n + 1 for all n ∈ N.(2) Property LR:
u ontains one left speial and one right speial fator of every length.(3) Property BO:all bispeial fators of u are ordinary.(4) Property R:any fator of u has exatly k return words.(5) Property P :the palindromi omplexity of u satis�es P(n) + P(n + 1) = k + 1 for all n ∈ N.(6) Property PE:every palindrome has a unique palindromi extension in u.(7) Balane properties:(a) Property B∀:

u is aperiodi and for all a ∈ A and for all fators w, v ∈ L(u) with |w| = |v| it holds
||w|a − |v|a| ≤ k − 1.(b) Property B∃:

u is aperiodi and there exists a ∈ A suh that for all fators w, v ∈ L(u) with |w| = |v| itholds
||w|a − |v|a| ≤ k − 1.() Property AC:

u is aperiodi and the abelian omplexity of u satis�es AC(n) = k for all n ∈ N, n ≥ 1.At �rst, let us mention whih properties are satis�ed by the two generalizations of Sturmian wordsfrom Setion 5.1. AR words ful�ll Properties: C,LR,BO,R,P ,PE and k-iet words satisfy Properties:
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C,BO,R. If moreover the permutation de�ning the k-iet word is symmetri, then these words haveProperties P and PE . Property LR does not hold for k-iet words.It follows diretly from the de�nition that some Properties imply others. For instane, by (2.1) BOimplies C. They are not equivalent as shown by the following example taken from [26℄.Example 3 (C 6⇒ BO). The in�nite ternary word limn→∞ ϕn(a), where ϕ(a) = ab, ϕ(b) = cab, ϕ(c) =
ccab � a reoding of the Chaon substitution � has the omplexity 2n + 1 for every n ∈ N, but ontainsin�nitely many strong and weak BS fators.In the sequel, we will show that no two of these properties are equivalent on a multiliteral alphabet.Conerning Properties B∀,B∃ and AC, we will not treat them but in the last setion sine they arevery restritive, and onsequently, satis�ed only by a small lass of in�nite words.5.3. Property LRProperty LR does not haraterize AR words sine it is satis�ed by a larger lass of words. In�nitewords with the language losed under reversal and satisfying Property LR oinide with extensively stud-ied aperiodi episturmian words. Nevertheless, Property LR may be satis�ed by words whose languageis not losed under reversal, as illustrated in [23℄ by the following example. It shows also that Property
LR does not guarantee Properties C,BO,R,P ,PE.Example 4 (LR 6⇒ language losed under reversal, C,BO,R,P ,PE). If we onstrut an in�nite word
u so that we replae b with bc in the Fibonai word abaababaabaabab . . . , the �xed point of ϕ : a →
ab, b → a, then bc is a fator of L(u), however cb not. It is easy to see that suh a word has stilla unique in�nite RS and a unique LS branh (the in�nite word u itself). Consequently, Property LR ispreserved. However, both of these in�nite speial branhes have only two extensions, hene Property C(and BO as well) fails. The fator c has only two return words caab and cab, hene Property R does nothold. Moreover, as u is uniformly reurrent and its language is not losed under reversal, it ontains byTheorem 2 only a �nite number of palindromes. Therefore, Properties P and PE are not satis�ed.On the other hand, observing k-iet words, we learn that none of Properties C,BO,R,P ,PE imply LR.The problem to desribe the lass of in�nite words with Property LR whose language is not losed underreversal requires a further study.5.4. Property RLet us reall that in�nite words with Property R are neessarily uniformly reurrent. If their languageis not losed under reversal, then it annot ontain in�nitely many palindromes by Theorem 2. Suhwords exist, as illustrated by the following example, therefore, Property R does not imply P .Example 5 (R 6⇒ P). The �xed point u of ϕ, where ϕ(a) = aab, ϕ(b) = ac, ϕ(c) = a, ontains bac,but cab is not its fator. The fat that every fator of u has three return words is explained in [9℄ fora whole lass of in�nite words oding β-integers.We have seen that AR words and k-iet words have both Property R and C, however, as shown in [26℄by the following example, Property C does not imply Property R on multiliteral alphabets.Example 6 (C 6⇒ R). The �xed point of ϕ : a → ab, b → cab, c → ccab � the above mentioned reodingof the Chaon substitution � has the omplexity 2n + 1 for every n ∈ N, but ontains more than threereturn words of ertain fators (for example the fator bc has 4 return words: bca, bcca, bcaba and bccaba.The following theorems ome from the paper [9℄ that is devoted to the study of Property R for in�nitewords on multiliteral alphabets. Let us observe one more AR words and k-iet words, these lasses satisfynot only Property C, but also Property BO. It is thus natural to ask whether Property BO guarantees
R. The orollary of the following theorem will provide an answer.Theorem 14. If u is an in�nite word with no weak BS fators, then u has Property R if and only if uis uniformly reurrent and satis�es C.



TITLE WILL BE SET BY THE PUBLISHER 13Let us underline, an in�nite word u has Property BO if and only if it has Property C and ontains noweak BS fators. It results in the advertised orollary.Corollary 15. Let u be a uniformly reurrent in�nite word. Then
BO ⇒ R.If we restrit our onsideration to the ternary alphabet, the impliation an be reversed.Theorem 16. Let u be a ternary uniformly reurrent in�nite word. Then
BO ⇔ R.As soon as the alphabet has more than three letters, Property R does not imply Property BO anymore.Example 7 (R 6⇒ BO). The uniformly reurrent in�nite word u = limn→∞ ϕn(a), where

ϕ(a) = acbca, ϕ(b) = acbcadbdaca, ϕ(c) = dbcbdacadbd, ϕ(d) = dbcbd,satis�es R, but not C (sine C(n) is even for all n ∈ N) and u ontains, of ourse, weak BS fators. Fordetails onsult [9℄.The question whether there exists a nie haraterization of words with Property R on alphabets withmore than three letters remains open.5.5. Property P and PEThe paper [8℄ is foused on the study of Properties P and PE . As soon as an in�nite word u hasProperty PE , then u has exatly one in�nite palindromi branh with enter a for every letter a ∈ A andone in�nite palindromi branh with enter ε. Therefore, u ontains exatly #A palindromes for everyodd length (entral fators of palindromi branhes with enters a ∈ A) and one palindrome for everyeven length (entral fator of the in�nite palindromi branh with enter ε). Consequently, Property Pis also satis�ed by u.Let us reall that Property P may be reformulated in the following way
P(n + 2) = P(n) for all n ∈ N, (5.1)where P(0) = 1. We will equally use both of the forms of Property P .Let u be an in�nite word satisfying PE . The language L(u) ontains in�nitely many palindromes, butit need not be losed under reversal, neither reurrent nor rih as illustrated by the following example.Example 8 (PE 6⇒ language losed under reversal, PE 6⇒ rihness). The in�nite word u on the alphabet

{a, b, c} de�ned in the following way:
u = caccb ccc︸︷︷︸

3×

a cccc︸︷︷︸
4×

b ccccc︸ ︷︷ ︸
5×

a cccccc︸ ︷︷ ︸
6×

b ccccccc︸ ︷︷ ︸
7×

a . . .has three in�nite palindromi branhes with enters a, b and c

. . . cccaccc . . . , . . . cccbccc . . . , . . . ccccccc . . .and one in�nite palindromi branh with entral fators of even length of the form . . . cccccccc . . . Thefator accb ours only one in u, thus u is not reurrent and hene L(u) is not losed under reversal.Moreover, u is not rih sine the pre�x caccbccca of length 9 ontains only 9 palindromes:
ε, a, b, c, cc, cac, cbc, ccc and ccbcc.



14 TITLE WILL BE SET BY THE PUBLISHERHowever, if the language L(u) is losed under reversal, then it is possible to say more about the relationof Properties P and C and the rihness of u. When both P and C are satis�ed, the equality in (3.1) isreahed. Appliation of Theorem 8 provides us with the following orollary.Corollary 17. Let u be an in�nite word whose language is losed under reversal. Then
P + C ⇒ rihness of u.The �rst example shows that Property P itself does not guarantee rihness even if the language islosed under reversal. The seond one illustrates that the impliation in Corollary 17 annot be reversed.Example 9 (PE 6⇒ rihness, PE 6⇒ C). A known example of an in�nite word with the language losedunder reversal and with a higher fator omplexity is the billiard sequene on three letters, for whih

C(n) = n2 + n + 1. As shown in [14℄, suh words satisfy Property PE , hene P as well. Consequently,billiard sequenes do not reah the upper bound in (3.1) and by Theorem 8 annot be rih.Example 10 (rihness 6⇒ P , rihness 6⇒ C). Let ϕ be de�ned on an m-letter alphabet as follows:
ϕ(0) = 0t1, ϕ(1) = 0t2, . . . , ϕ(m − 2) = 0t(m − 1), ϕ(m − 1) = 0s,where s, t ∈ N and t ≥ s ≥ 2. The �xed point u of ϕ satis�es the equality P(n + 1) + P(n) = ∆C(n) + 2for all n. As the language is losed under reversal, by Theorem 8 u is rih. Property P is not satis�edsine the sum P(n+1)+P(n) is not onstant. Further properties of palindromes in u an be found in [4℄.Let us examine in the sequel the onnetion between Properties C and P , resp. C and PE .5.5.1. Ternary alphabetLet us limit our onsiderations to the ternary alphabet. The following theorem and examples omefrom [8℄.Theorem 18. Let u be an in�nite ternary word with the language losed under reversal. Then(1) C ⇒ P ,(2) BO ⇒ PE .The impliation in Theorem 18 annot be reversed. We have already illustrated in Example 9 thateven the stronger property PE does not ensure C. Let us provide one more ounterexample - a �xed pointof a substitution.Example 11 (PE 6⇒ C). Denote by u the in�nite ternary word being the �xed point of the substitution

Φ de�ned by
Φ(a) = aba, Φ(b) = cac, Φ(c) = aca. (5.2)Then the language of u is losed under reversal. On one hand, u has Property PE, onsequently, u hasProperty P , too. On the other hand, Property C fails and L(u) ontains in�nitely many weak BS fators.Properties P and PE are equivalent for binary words. However already for ternary words, the impli-ation P ⇒ PE does not hold any more.Example 12 (P 6⇒ PE). Let v be the ternary in�nite word de�ned by v = Ψ(u), where Ψ : {A, B}∗ →

{a, b, c}∗ is the morphism given by
Ψ(A) = bc and Ψ(B) = baa,and u is the �xed point of the substitution ϕ de�ned by

ϕ(A) = ABBABBA, ϕ(B) = ABA.Then v satis�es P , but does not satisfy PE .



TITLE WILL BE SET BY THE PUBLISHER 15The relation between R and P follows from Theorem 18 and Theorem 16.Corollary 19. Let u be an in�nite ternary word with the language losed under reversal. Then
R ⇒ PE .The impliation annot be reversed.Example 13 (PE 6⇒ R). Consider the �xed point u of the substitution in (5.2). As mentioned above,

u ontains weak BS fators. Then by Theorem 16, u does not satisfy R.Putting together Theorems 18 and Corollary 17, we obtain one more orollary.Corollary 20. Let u be an in�nite ternary word with the language losed under reversal. Then
C ⇒ rihness of u.In ontrast with Corollary 17, we see that on a ternary alphabet already Property C itself ensuresrihness.Neither in this ase, the reversed impliation holds. Consult Example 10 or the following examplewith a periodi word.Example 14 (rihness 6⇒ C). The periodi in�nite word (abcba)ω is rih (sine omplete return wordsof palindromi fators are palindromes) and has a bounded omplexity.5.5.2. Multiliteral alphabetIn this setion, two new theorems onerning Properties P and PE for multiliteral in�nite words willbe proved.Theorem 21. Let u be an in�nite word with the language losed under reversal.Assume C: PE ⇔ BO.Proof. (⇐): Let us prove the statement by ontradition. Assume that Property BO holds and Property

PE does not. It is lear that the property PE an only be violated on a palindromi BS fator. ByProperty BO, all palindromi fators have their bilateral order equal to zero. By Proposition 9, theyhave an odd number of palindromi extensions, partiularly at least one.Sine the language is losed under reversal, Theorem 3 implies the inequality (3.1) for all n ∈ N

P(n) + P(n + 1) ≤ 2 + ∆C(n).Let w denote the shortest palindromi BS fator that does not have exatly one palindromi extension.Denote N = |w|. Then we have for all n ≤ N ,
P(n) + P(n + 1) = #A + 1.Sine Property BO implies Property C, we have 2 + ∆C(n) = 2 + (#A − 1), hene the equality in (3.1)is attained for all n ≤ N .Sine w has to have at least 3 palindromi extensions, one an see that P(N +2) ≥ P(N)+2. Thus, weobtain P(N +1)+P(N +2) ≥ P(N +1)+P(N)+2 = #A+3 = ∆C(N +1)+4, whih is a ontraditionwith (3.1). We onlude that Property PE holds.(⇒): Assume Property PE holds. Then Property P holds as well. By Corollary 17 u is rih. Consequently,we an apply Theorem 10 and we obtain b(w) = 0 for all non-palindromi BS fators and b(w) =

#Pext(w)− 1 for all palindromi BS fators. By Property PE every palindromi BS fator has a uniquepalindromi extension, thus b(w) = 0 for palindromi BS fators, too. �



16 TITLE WILL BE SET BY THE PUBLISHERLet us dedue several orollaries of Theorem 21. The most straightforward onerns rihness andProperty BO. It follows ombining Theorems 21 and 8.Corollary 22. Let u be an in�nite word with the language losed under reversal. Then
BO ⇒ rihness of u.Putting together Theorems 2, 14 and 21, we obtain the following orollaries.Corollary 23. Let u be a uniformly reurrent in�nite word.Assume C: PE ⇒ R.The reversed impliation does not hold. Property R does not even guarantee the weaker property P .Example 15 (R + C 6⇒ P). Consider again the in�nite word from the previous setion: the �xed point

u of ϕ, where ϕ(a) = aab, ϕ(b) = ac, ϕ(c) = a. Properties C and R are satis�ed (as explained in [9℄),
u is uniformly reurrent and the language L(u) is not losed under reversal. By Theorem 2, u ontainsonly a �nite number of palindromes.Notie that the assumptions in Corollary 23 imply that the language L(u) is losed under reversal.It is natural to ask whether the impliation R ⇒ PE holds for in�nite words with the language losedunder reversal. The answer is however negative. Property R does not imply even the weaker property P .Example 16. (R+ language losed under reversal 6⇒ P) Consider again the uniformly reurrent in�niteword from [9℄ given by u = limn→∞ ϕn(a), where

ϕ(a) = acbca, ϕ(b) = acbcadbdaca, ϕ(c) = dbcbdacadbd, ϕ(d) = dbcbd.It satis�es R, but C and BO are violated. It is not di�ult to �nd in�nitely many palindromes amongweak BS fators. Thus, the language L(u) is losed under reversal. However PE is not satis�ed beause
cbc, dbd ∈ L(u). Nor P holds sine P(1) + P(2) = 4 6= 5.We notie in the previous examples that to demand either only the language losed under reversal oronly Property C in order to reverse the impliation in Corollary 23 is not su�ient. It is however notsolved whether any in�nite word with the language losed under reversal and having Properties C and Rsatis�es Property PE or at least P as well.Corollary 24. Let u be a uniformly reurrent in�nite word.Assume PE: rihness of u ⇔ R.Proof. Reall that by Theorem 2, the language is losed under reversal.
(⇒): Suppose u is rih. Then Property PE guarantees that Property P holds as well. Sine the languageis losed under reversal, Property P together with Theorem 8 implies C is also satis�ed. The statementfollows then by Corollary 23.
(⇐): Let us prove the seond impliation by ontradition. Assume R is satis�ed and u is not rih. Theo-rem 6 laims that there exists a palindrome w whih has a omplete return word that is not a palindromeitself. As PE holds, the language has #A + 1 biin�nite palindromi branhes. As w is a palindrome,we an �nd it in the middle of one branh. Sine u is uniformly reurrent, we an �nd w in a boundeddistane from the enter (on both sides) of the remaining #A branhes. Thus we have #A distintpalindromi omplete return words of w. As w was supposed to have a non-palindromi omplete returnword, we have a ontradition with R. �In Theorem 21 for in�nite words having Property C, we have proved that Property PE oinides withProperty BO. Under the same assumption on the omplexity, we are again able to haraterize Property
P imposing this time a weaker ondition on bilateral orders of BS fators.



TITLE WILL BE SET BY THE PUBLISHER 17Theorem 25. Let u be an in�nite word with the language losed under reversal and satisfying Property C.Then Property P holds if and only if any bispeial fator w of u satis�es:
• if w is non-palindromi, then

b(w) = 0,

• if w is a palindrome, then
b(w) = #Pext(w) − 1.Proof. (⇐): Theorem 10 implies that u is rih. Sine the language is losed under reversal, we an useTheorem 8. By Property C, we have P(n + 1) + P(n) = ∆C(n) + 2 = #A + 1, thus Property P holds.

(⇒): Corollary 17 states that u is rih. The statement about bilateral orders follows then by Theorem 10.
�This theorem may be immediately reformulated using Theorem 10.Corollary 26. Let u be an in�nite word with the language losed under reversal.Assume C: P ⇔ rihness of u.Non-palindromi bispeial fators an really our in in�nite words with the language losed underreversal and satisfying Properties C and PE , thus P as well. This means that there exist rih words withnon-palindromi BS fators.Example 17. A ternary word with suh properties is v = π(u), where u = ϕ2(u) and

ϕ : A → CAC, B → CACBD, C → BDBCA, D → BDB,

π : A → ba, B → b, C → a, D → abc.The substitution ϕ satis�es for any letter x ∈ {A, B, C, D}, if we ut o� the last two letters of ϕ2n(x),we get a palindrome. Together with the uniform reurrene of u, Theorem 2 implies that the language
L(u) is losed under reversal. Every LS fator of u is a pre�x of ϕ2n(B) or ϕ2n(C) for some n ∈ N,onsequently, ∆C(n) = 2 for all n ∈ N, n ≥ 1.For every non-empty palindrome w ∈ L(u) (exept for B and C), its morphi image π(w) without �rsttwo letters is a palindrome. As v ontains in�nitely many distint palindromes and is a morphi imageof a uniformly reurrent word, thus uniformly reurrent, too, the language L(v) is losed under reversal.The word v has two in�nite LS branhes: every LS fator of v is either a pre�x of π(ϕ2n(B)) or of
π(ϕ2n(C)). Therefore, v satis�es Property C. Moreover, v ontains only ordinary BS fators. ApplyingTheorem 21, Property PE holds as well. Remark that the fator ba is a non-palindromi BS fator of v.5.6. Balane propertiesIt is a diret onsequene of the de�nition that

AC ⇒ B∀ ⇒ B∃. (5.3)The �rst impliation follows from the fat that if there are two fators v, w of the same length that ontaina distint number of letters a, say l and r, then there exist fators ontaining any number of letters abetween l and r (they may be found in any fator having v as its pre�x and w as its su�x, or vie versa).Let us point out that our favorite generalizations of Sturmian words, namely AR words and k-iet words,violate the property B∀. The paper [19℄ provides a onstrution of an AR word u that is not c-balanedfor any c. The same property have also all 3-iet words given by the transformation T assoiated with thesymmetri permutation and verifying the property i.d.o.., whih an be shown using methods from [1℄.It is natural to ask whether in�nite words on multiliteral alphabets with Property AC exist. A reentanswer has been provided in [21℄: there are no in�nite words satisfying AC on alphabets ontaining more



18 TITLE WILL BE SET BY THE PUBLISHERthan 3 letters. On the other hand, there exist ternary in�nite words with Property AC as shown by theexample taken from [42℄.Example 18. Let v be any aperiodi in�nite word on {A, B} and put u = π(v), where π is the morphismde�ned by π(A) = abc, π(B) = acb. Then AC(n) = 3 for all n ∈ N, n ≥ 1.A more general theorem has been proved ibidem.Theorem 27. If an aperiodi uniformly reurrent in�nite word u on a ternary alphabet is 1-balaned,then u has Property AC.Let us underline in the following examples that none of the impliations in (5.3) an be reversed. The�rst example omes from [43℄ and the seond one is taken from [47℄.Example 19 (B∀ 6⇒ AC). The ternary Tribonai word � the �xed point of the substitution ϕ : a →
ab, b → ac, c → a � is 2-balaned, however its abelian omplexity reahes �ve values: 3, 4, 5, 6, 7. Notiethat the Tribonai word belongs to AR words, whih satisfy Properties C,LR,BO,R,P ,PE.Example 20 (B∃ 6⇒ B∀). The �xed point u of the substitution ϕ : a → aab, b → c, c → ab has thefollowing properties (shown in [47℄):

• for any fators v, w ∈ L(u) with |v| = |w|, it holds
||v|x − |w|x| ≤ 2 if x ∈ {b, c},

• there exist v, w ∈ L(u) with |v| = |w| suh that
||v|a − |w|a| = 3.Thus, u has Property B∃. The word u is a oding of distanes between neighboring β-integers, where βis the largest root of the polynomial x3 − 2x2 − x + 1. The word u is moreover known (see [28℄) to verifyProperty BO, but not LR. Theorem 14 implies that u has Property R as well. Its language is not losedunder reversal, onsequently, neither PE nor P holds.Generally, it is di�ult to deide whether an in�nite word has Property B∃ or B∀. A slightly simplerproblem is to study in�nite words that are c-balaned for some c. The riterion for existene of suha onstant c for �xed points of a primitive substitution has been provided in [2℄, observing the spetra ofadjaene matries of substitutions. In general, it is however impossible to determine the minimal valueof c from the spetrum. To our knowledge, besides the ternary words onsidered in Examples 19 and 20,the only non-sturmian �xed points of primitive substitutions, for whih the minimal value of c is known,have been examined in [10℄ and [48℄.6. Overview of relations and examplesIn this setion we provide a brief overview of relations and examples presented in the paper. Most ofthe relations are depited in Figure 3. Examples are listed in Table 1. The word is either a �xed pointof the given substitution, the image by the morphism π of a �xed point of the substitution ϕ, the limitof the sequene (un) or otherwise spei�ed.
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u0 = ab, un+1 = unabũn uniformly reurrent, losed under reversal,�nite number of palindromes ex. 1 on p. 5,[13℄
u0 = ε, un+1 = unabcn+1un reurrent, ∞-many palindromes, notlosed under reversal ex. 2 on p. 5,[16℄
a → ab, b → cab, c → ccab C, not BO, not R ex. 3 on p. 12,ex. 6 on p. 12,[26℄
ϕ: A → AB, B → A; π: A → a,
B → bc

LR, not losed under reversal, �nite num-ber of palindromes, not C, not R ex. 4 on p. 12
a → aab, b → ac, c → a R, not losed under reversal ex. 5 on p. 12,[9℄
a → acbca, b → acbcadbdaca, c →
dbcbdacadbd, d → dbcbd

R, losed under reversal, not C, not P ex. 7 on p. 13,ex. 16 on p. 16,[9℄
u = ca cc︸︷︷︸

2×

b ccc︸︷︷︸
3×

a cccc︸︷︷︸
4×

b ccccc︸ ︷︷ ︸
5×

a . . . ∞-many palindromes, not losed under re-versal, not rih ex. 8 on p. 13billiard sequene on three letters losed under reversal, PE, not C, not rih ex. 9 on p. 14,[14℄
a → aab, b → aac, c → aa rih, not C, not P ex. 10 on p. 14,[4℄
a → aba, b → cac, c → aca losed under reversal, PE, not C, not R ex. 11 on p. 14,ex. 13 on p. 15,[8℄
ϕ: A → ABBABBA, B → ABA; π:
A → bc, B → baa

losed under reversal, C,P , not PE ex. 12 on p. 14,[8℄
(abcba)ω rih, not C ex. 14 on p. 15
a → aab, b → ac, c → a C, R, not losed under reversal ex. 15 on p. 16,[9℄
ϕ: A → CAC, B → CACBD, C →
BDBCA, D → BDB; π: A → ba,
B → b, C → a, D → abc

PE , C, losed under reversal, rih, ontainsnon-palindromi BS fators ex. 17 on p. 17
u = π(v), π: A → abc, B → acb, vis an aperiodi word over {A, B}

AC ex. 18 on p. 18,[42℄
a → ab, b → ac, c → a LR,BO,R,PE , B∀, not AC ex. 19 on p. 18,[43℄
a → aab, b → c, c → ab B∃, not B∀, not losed under reversal, BO,not LR, R ex. 20 on p. 18,[47℄Table 1. Example overviewReferenes[1℄ B. Adamzewski, Codages de rotations et phénomenes d'autosimilarité. J. Théor. Nombres Bordeaux 14 (2002) 351-386.[2℄ B. Adamzewski, Balanes for �xed points of primitive substitutions. Theoret. Comput. Si. 307 (2003) 47-75.[3℄ J.P. Allouhe, M. Baake, J. Cassaigne, D. Damanik, Palindrome omplexity. Theoret. Comput. Si. 292 (2003) 9-31.[4℄ P. Ambroº, Ch. Frougny, Z. Masáková, E. Pelantová, Palindromi omplexity of in�nite words assoiated with simpleParry numbers. Ann. Inst. Fourier 56 (2006) 2131-2160.[5℄ P. Arnoux, C. Mauduit, I. Shiokawa, J.-I. Tamura, Complexity of sequenes de�ned by billiards in the ube. Bull. So.Math. Frane 122 (1994) 1-12.[6℄ P. Arnoux, G. Rauzy, Représentation géométrique de suites de omplexité 2n + 1. Bull. So. Math. Frane 119 (1991)199-215.



TITLE WILL BE SET BY THE PUBLISHER 21[7℄ P. Baláºi, Z. Masáková, E. Pelantová, Fator versus palindromi omplexity of uniformly reurrent in�nite words.Theoret. Comput. Si. 380 (2007) 266-275.[8℄ L'. Balková, E. Pelantová, �. Starosta, Palindromes in in�nite ternary words. RAIRO: Theoret. Informatis Appl. 43(2009) 687-702.[9℄ L'. Balková, E. Pelantová, W. Steiner, Sequenes with onstant number of return words. Monatsh. Math. 155(3-4)(2008) 251-263.[10℄ L'. Balková, E. Pelantová, O. Turek, Combinatorial and arithmetial properties of in�nite words assoiated with qua-drati non-simple Parry numbers. RAIRO: Theoret. Informatis Appl. 41 (2007) 307-328.[11℄ Y. Baryshnikov, Complexity of trajetories in retangular billiards. Comm. Math. Phys. 174 (1995) 43-56.[12℄ J. Berstel, Reent results on extensions of Sturmian words. Int. J. Algebra Comput. 12 (2002), 371-385.[13℄ J. Berstel, L. Boasson, O. Carton, I. Fagnot, In�nite words without palindromes. arXiv:0903.2382 (2009)[14℄ J.P. Borel, Complexity and palindromi omplexity of billiards words, in Proeedings of WORDS 2005, edited by S.Brlek, C. Reutenauer (2005) 175-183.[15℄ S. Brlek, S. Hamel, M. Nivat, C. Reutenauer, On the palindromi omplexity of in�nite words. Int. J. Found. Comput.Si. 2 (2004) 293-306.[16℄ M. Bui, A. De Lua, A. Glen, L.Q. Zamboni, A onnetion between palindromi and fator omplexity using returnwords. Adv. in Appl. Math 42 (2009) 60-74.[17℄ M. Bui, A. De Lua, A. Glen, L.Q. Zamboni, A new harateristi property of rih words. Theoret. Comput. Si.410 (2009) 2860-2863.[18℄ J. Cassaigne, Complexity and speial fators. Bull. Belg. Math. So. Simon Stevin 4 1 (1997) 67-88.[19℄ J. Cassaigne, S. Ferenzi, L.Q. Zamboni, Imbalanes in Arnoux-Rauzy sequenes. Ann. Inst. Fourier 50 (2000) 1265-1276.[20℄ E.M. Coven, G.A. Hedlund, Sequenes with minimal blok growth. Math. Systems Theory 7 (1973) 138-153.[21℄ J. Currie, N. Rampersad, Reurrent words with onstant Abelian omplexity. Adv. in Appl. Math. (2010)DOI:10.1016/j.aam.2010.05.001[22℄ X. Droubay, G. Pirillo, Palindromes and Sturmian words. Theoret. Comput. Si. 223 (1999) 73-85.[23℄ X. Droubay , J. Justin , G. Pirillo, Episturmian words and some onstrutions of de Lua and Rauzy. Theoret. Comput.Si. 255 (2001) 539-553.[24℄ F. Durand, A haraterization of substitutive sequenes using return words. Disrete Math. 179 (1998) 89-101.[25℄ I. Fagnot, L. Vuillon, Generalized balanes in Sturmian words. Disrete Applied Mathematis 121 (2002) 83-101.[26℄ S. Ferenzi, Les transformations de Chaon: ombinatoire, struture géométrique, lien ave les systèmes de omplexité
2n + 1. Bull. So. Math. Fr. 123 (1995) 271-292.[27℄ S. Ferenzi, L. Zamboni, Languages of k-interval exhange transformations. Bull. London Math. So. 40(4) (2008)705-714.[28℄ C. Frougny, Z. Masáková, E. Pelantová, Complexity of in�nite words assoiated with beta-expansions. RAIRO: Theoret.Informatis Appl. 38 (2004) 162-184.[29℄ A. Glen, J. Justin, Episturmian words: a survey. RAIRO: Theoret. Informatis Appl. 43 (2009) 403-442.[30℄ A. Glen, J. Justin, S. Widmer, L.Q. Zamboni, Palindromi rihness. Eur. J. Comb. 30 (2009) 510-531.[31℄ A. Hof, O. Knill, B. Simon, Singular ontinuous spetrum for palindromi Shröodinger operators. Comm. Math. Phys.174 (1995) 149-159.[32℄ C. Holton, L.Q. Zamboni, Geometri realizations of substitutions. Bull. So. Math. Frane 126 (1998) 149�179.[33℄ J. Justin, G. Pirillo, Episturmian words and episturmian morphisms. Theoret. Comput. Si. 276 (2002) 281-313.[34℄ J. Justin, L. Vuillon, Return words in Sturmian and episturmian words. RAIRO: Theoret. Informatis Appl. 34 (2000)343-356.[35℄ M.S. Keane, Interval exhange transformations. Math. Z. 141 (1975) 25-31.[36℄ M. Lothaire, Algebrai ombinatoris on words. volume 90 of Enylopedia of Mathematis and its Appliations,Cambridge University Press (2002).[37℄ Z. Masáková, E. Pelantová, Relation between powers of fators and the reurrene funtion haraterizing Sturmianwords. Theoret. Comput. Si. 410 (38-40) (2009) 3589-3596.[38℄ M. Morse, G.A. Hedlund, Symboli dynamis. Amer. J. Math. 60 (1938) 815-866.[39℄ M. Morse, G.A. Hedlund, Symboli dynamis II - Sturmian trajetories. Amer. J. Math. 62 (1940) 1-42.[40℄ G. Rauzy, Ehanges d'intervalles et transformations induites. Ata Arith. 34 (1979) 315-328.[41℄ G. Rihomme, Another haraterization of Sturmian words (one more). Bull. Eur. Asso. Theor. Comput. Si. EATCS67 (1999) 173-175.[42℄ G. Rihomme, K. Saari, L.Q. Zamboni, Abelian omplexity in minimal subshifts. arXiv:0904.2925v1 (2009)[43℄ G. Rihomme, K. Saari, L.Q. Zamboni, Balane and abelian omplexity of the Tribonai word. Adv. Appl. Math. 45(2010) 212�231.[44℄ G. Rote, Sequenes with subword omplexity 2n. J. Number Th. 46 (1993) 196-213.[45℄ J. Smillie, C. Uligrai, Beyond Sturmian sequenes: oding linear trajetories in the regular otagon. Pro. LondonMath. So. (2010) DOI: 10.1112/plms/pdq018[46℄ S. Tabahnikov, Billiards. Panoramas et synthèse, SMF, Numéro 1 (1995).
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