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STURMIAN JUNGLE (OR GARDEN?) ON MULTILITERAL ALPHABETSL'ubomíra Balková, Edita Pelantová and �t¥pán Starosta1Abstra
t. The properties 
hara
terizing Sturmian words are 
onsidered for words on mul-tiliteral alphabets. We summarize various generalizations of Sturmian words to multiliteralalphabets and enlarge the list of known relationships among these generalizations. We providea new equivalent de�nition of ri
h words and make use of it in the study of generalizationsof Sturmian words based on palindromes. We also 
olle
t many examples of in�nite words toillustrate di�eren
es in the generalized de�nitions of Sturmian words.1991 Mathemati
s Subje
t Classi�
ation. 68R15.1. Introdu
tionSturmian words, i.e., aperiodi
 words with the lowest fa
tor 
omplexity, appeared �rst in the paper ofHedlund and Morse in 1940. Sin
e then Sturmian words have been in the 
enter of interest of many math-emati
ians and the number of dis
overies of new properties and 
onne
tions keeps growing. The 
harmof Sturmian words 
onsists in their natural appearan
e while studying diverse problems. Many equiva-lent de�nitions have been found that way. Sturmian words are binary and every property 
hara
terizingSturmian words asks for a fruitful extension to an analogy on a larger alphabet. Well-known examples ofsu
h e�orts are Arnoux-Rauzy words, words 
oding interval ex
hange transformations, or billiard words.All these words belong to well established 
lasses and their des
riptions and properties 
an be found inmany works [5, 6, 11, 27, 35, 40, 46℄. An overview of some generalizations of Sturmian words is providedin [12℄ and [50℄.The aim of this paper is to attra
t attention to other generalizations of Sturmian words. Our motivationstems from re
ent results on palindromes in in�nite words that have ended in the de�nition of words ri
hin palindromes, the de�nition of defe
t, the des
ription of a relation between fa
tor and palindromi

omplexity, et
. [3, 7, 15℄. Impulses for su
h an intensive resear
h of palindromes 
ome 
on
ededly fromthe arti
le [22℄ whi
h 
hara
terizes Sturmian words by palindromes, the arti
le [23℄ whi
h investigatesthe number of palindromes in pre�xes of in�nite words and last, but not least, the dis
overy of the role ofpalindromes in des
ription of the spe
trum of S
hrödinger operators with aperiodi
 potentials [31℄. Whilegeneralizing Sturmian words we have taken into 
onsideration the 
hara
terization of Sturmian words byreturn words from [49℄ and a re
ent de�nition of Abelian 
omplexity [42, 43℄, whi
h is 
losely 
onne
tedwith balan
e properties.We 
onsider the following properties (k denotes the 
ardinality of alphabet A):(1) Property C:the fa
tor 
omplexity of u satis�es C(n) = (k − 1)n + 1 for all n ∈ N.(2) Property LR:

u 
ontains one left spe
ial and one right spe
ial fa
tor of every length.Keywords and phrases: Sturmian words, generalizations of Sturmian words, palindromes, ri
h words
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2 TITLE WILL BE SET BY THE PUBLISHER(3) Property BO:all bispe
ial fa
tors of u are ordinary.(4) Property R:any fa
tor of u has exa
tly k return words.(5) Property P :the palindromi
 
omplexity of u satis�es P(n) + P(n + 1) = k + 1 for all n ∈ N.(6) Property PE:every palindrome has a unique palindromi
 extension in u.(7) Balan
e properties:(a) Property B∀:
u is aperiodi
 and for all a ∈ A and for all fa
tors w, v ∈ L(u) with |w| = |v| it holds

||w|a − |v|a| ≤ k − 1.(b) Property B∃:
u is aperiodi
 and there exists a ∈ A su
h that for all fa
tors w, v ∈ L(u) with |w| = |v| itholds

||w|a − |v|a| ≤ k − 1.(
) Property AC:
u is aperiodi
 and the abelian 
omplexity of u satis�es AC(n) = k for all n ∈ N, n ≥ 1.All properties are equivalent on a binary alphabet and they 
hara
terize Sturmian words. No twoof them are equivalent on the set of in�nite words over a multiliteral alphabet. The non-equivalen
e isshown by 
ounterexamples. However some properties imply others, or it 
an be shown that a 
oupleof properties are equivalent on a 
ertain 
lass of in�nite words. For instan
e, on the 
lass of uniformlyre
urrent ternary words Properties R and BO are equivalent.There exist more equivalent de�nitions of Sturmian words, for instan
e the de�nition based on balan
eproperties of subfa
tors of fa
tors [25℄, on the index of an in�nite word [37℄, or Ri
homme's 
hara
teristi
sof Sturmian words [41℄. We do not pay attention to these de�nitions in our survey.The paper is organized as follows. In se
tion 2 we re
all the notions playing an important role in thede�nitions of Properties 1 through 7. We re
all the notion of substitution whi
h is irrelevant for thegeneralizations of Sturmian words but is used to 
onstru
t most of examples of in�nite words. Se
tion 3is fo
used on the study of palindromes in in�nite words: we summarize older and new results 
on
erningpalindromes, we de�ne palindromi
 bran
hes. A new result in this se
tion is Theorem 10 providing a new
hara
terization of ri
h words by means of bilateral orders. Se
tion 4 shortly summarizes essential resultson Sturmian words. Se
tion 5 is devoted to an overview of known relations among di�erent generalizationsof Sturmian words, mostly from arti
les [7, 9, 16, 30, 42, 43℄. New results are in Theorems 21 and 25, andCorollaries 23 and 24. The last se
tion is a brief summary of sele
ted relations and examples illustratingthe studied Properties. 2. Notation and definitionsBy A we denote a �nite set of symbols, usually 
alled letters; the set A is therefore 
alled an alphabet.A �nite string w = w0w1 . . . wn−1 of letters of A is said to be a �nite word, its length is denoted by

|w| = n. Finite words over A together with the operation of 
on
atenation and the empty word ε as theneutral element form a free monoid A∗. The map
w = w0w1 . . . wn−1 7→ w̃ = wn−1wn−2 . . . w0is a bije
tion on A∗, the word w̃ is 
alled the reversal or the mirror image of w. A word w whi
h 
oin
ideswith its mirror image is a palindrome.Under an in�nite word u over the alphabet A we understand an in�nite string u = u0u1u2 . . . of lettersfrom A su
h that every letter of A o

urs in u. We 
all an in�nite word u eventually periodi
 if there
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h that u = wvω , where ω means `repeated in�nitely many times'. If w = ε,then u is said to be (purely) periodi
. If u is not eventually periodi
, then we 
all u aperiodi
.A �nite word w is a fa
tor of a word v (�nite or in�nite) if there exist words p and s su
h that v = pws.If p = ε, then w is said to be a pre�x of v, if s = ε, then w is a su�x of v. We say that a pre�x or a su�xis proper if it is not equal to the word itself.The language L(u) of an in�nite word u is the set of all its fa
tors. The fa
tors of u of length n formthe set denoted by Ln(u). Using this notation, we may write L(u) = ∪n∈NLn(u).We say that the language L(u) is 
losed under reversal if L(u) 
ontains with every fa
tor w also itsreversal w̃.An in�nite word u over A is 
alled c-balan
ed if for every a ∈ A and for every pair of fa
tors w, vof u of the same length |w| = |v|, we have ||w|a − |v|a| ≤ c, where |w|a means the number of letters
a 
ontained in w. Note that in the 
ase of a binary alphabet, say A = {0, 1}, this 
ondition may berewritten in a simpler way: an in�nite word u is c-balan
ed, if for every pair of fa
tors w, v of u with
|w| = |v|, we have ||w|0 − |v|0| ≤ c. We 
all 1-balan
ed words simply balan
ed.We say that two words w, v ∈ A∗ are abelian equivalent if for ea
h letter a ∈ A, it holds |w|a = |v|a.It is easy to see that the abelian equivalen
e de�nes indeed an equivalen
e relation on A∗. If A =
{a1, a2, . . . , ak}, then the Parikh ve
tor asso
iated with the word w ∈ A∗ is de�ned as

Ψ(w) = (|w|a1
, |w|a2

, . . . , |w|ak
).We 
all abelian 
omplexity (as de�ned in [42℄) of an in�nite word u the fun
tion AC : N → N given by

AC(n) = #{Ψ(w)
∣∣ w ∈ Ln(u)}.For any fa
tor w ∈ L(u), there exists an index i su
h that w is a pre�x of the in�nite word

uiui+1ui+2 . . .. Su
h an index i is 
alled an o

urren
e of w in u. If ea
h fa
tor of u has at leasttwo o

urren
es in u, the in�nite word u is said to be re
urrent. It 
an be easily shown that ea
h fa
torof a re
urrent word o

urs in�nitely many times. It is readily seen that if the language of u is 
losedunder reversal, then u is re
urrent. The in�nite word u is said to be uniformly re
urrent if for any fa
tor
w of u the distan
es between su

essive o

urren
es of w form a bounded sequen
e.Let j, k, j < k, be two su

essive o

urren
es of a fa
tor w in u. Then ujuj+1 . . . uk−1 is 
alled a returnword of w. Return words were �rst studied in [24℄ and [32℄. The set of all return words of w is denotedby R(w),

R(w) = {ujuj+1 . . . uk−1 | j, k being su

essive o

urren
es of w in u}.If v is a return word of w, then the word vw is 
alled a 
omplete return word of w. It is obvious that anin�nite re
urrent word is uniformly re
urrent if and only if the set of return words of any of its fa
tors is�nite.The (fa
tor) 
omplexity of an in�nite word u is the map C : N 7→ N, de�ned by C(n) = #Ln(u). Todetermine the in
rement of 
omplexity, one has to 
ount the possible extensions of fa
tors of length n.A left extension of w ∈ L(u) is any letter a ∈ A su
h that aw ∈ L(u). The set of all left extensions ofa fa
tor w will be denoted by Lext(w). We will mostly deal with re
urrent in�nite words u. In this 
ase,any fa
tor of u has at least one left extension. A fa
tor w is 
alled left spe
ial (or LS for short) if w hasat least two left extensions. Clearly, any pre�x of a LS fa
tor is LS as well. It makes therefore sense tode�ne an in�nite LS bran
h whi
h is an in�nite word whose all pre�xes are LS fa
tors of u. Similarly,one 
an de�ne a right extension, a right spe
ial (or RS) fa
tor, Rext(w), and an in�nite RS bran
h whi
his a left-sided in�nite word whose all su�xes are RS fa
tors of u.We say that a fa
tor w of u is a bispe
ial (or BS) fa
tor if it is both RS and LS. The role of BS fa
torsfor the 
omputation of 
omplexity 
an be ni
ely illustrated on Rauzy graphs (introdu
ed in [6℄).Let u be an in�nite word and n ∈ N. The Rauzy graph Γn of u is a dire
ted graph whose set of verti
esis Ln(u) and set of edges is Ln+1(u). An edge e ∈ Ln+1(u) starts in the vertex w and ends in the vertex
v if w is a pre�x and v is a su�x of e, see Figure 1. If the word u is re
urrent, the graph Γn is strongly
onne
ted for every n ∈ N, i.e., there exists a dire
ted path from every vertex w to every vertex v of thegraph.
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w = w0w1 · · ·wn−1 v = w1 · · ·wn−1wn

e = w0w1 · · ·wn−1wnFigure 1. In
iden
e relation between an edge and verti
es in a Rauzy graph.If the language L(u) of the in�nite word u is 
losed under reversal, then the operation that to everyvertex w of the graph asso
iates its mirror image, the vertex w̃, and to every edge e asso
iates ẽ mapsthe Rauzy graph Γn onto itself.The outdegree (indegree) of a vertex w ∈ Ln(u) is the number of edges whi
h start (end) in w. Obviouslythe outdegree of w is equal to #Rext(w) and the indegree of w is #Lext(w). The sum of outdegrees overall verti
es is equal to the number of edges in every dire
ted graph. Similarly, it holds for indegrees. Inparti
ular, for the Rauzy graph Γn we have
∑

w∈Ln(u)

#Rext(w) = C(n + 1) =
∑

w∈Ln(u)

#Lext(w) .The �rst di�eren
e of 
omplexity ∆C(n) = C(n + 1) − C(n) is thus given by
∆C(n) =

∑

w∈Ln(u)

(
#Rext(w) − 1

)
=

∑

w∈Ln(u)

(
#Lext(w) − 1

)
.A non-zero 
ontribution to ∆C(n) in the left-hand sum is given only by those fa
tors w ∈ Ln(u) forwhi
h #Rext(w) ≥ 2, and for re
urrent words, a non-zero 
ontribution to ∆C(n) in the right-hand sumis provided only by those fa
tors w ∈ Ln(u) for whi
h #Lext(w) ≥ 2. The last relation 
an be thusrewritten for re
urrent words u as

∆C(n) =
∑

w∈Ln(u), w RS(
#Rext(w) − 1

)
=

∑

w∈Ln(u), w LS(
#Lext(w) − 1

)
.If we denote Bext(w) = {awb ∈ L(u)

∣∣ a, b ∈ A}, then the se
ond di�eren
e of 
omplexity ∆2C(n) =
∆C(n + 1) − ∆C(n) = C(n + 2) − 2C(n + 1) + C(n) is given by

∆2C(n) =
∑

w∈Ln(u)

(
#Bext(w) − #Rext(w) − #Lext(w) + 1

)
. (2.1)Denote by b(w) the quantity

b(w) := #Bext(w) − #Rext(w) − #Lext(w) + 1.The number b(w) is 
alled the bilateral order of the fa
tor w and was introdu
ed in [18℄. It is readilyseen that if w is not a BS fa
tor, then b(w) = 0. Bispe
ial fa
tors are distinguished a

ording to theirbilateral order in the following way
• if b(w) > 0, then w is a strong BS fa
tor,
• if b(w) < 0, then w is a weak BS fa
tor,
• if b(w) = 0 then w is an ordinary BS fa
tor.A substitution on A is a morphism ϕ : A∗ → A∗ su
h that there exists a letter a ∈ A and a non-empty word w ∈ A∗ satisfying ϕ(a) = aw and ϕ(b) 6= ε for all b ∈ A. Sin
e a morphism satis�es

ϕ(vw) = ϕ(v)ϕ(w) for all v, w ∈ A∗, any substitution is uniquely determined by the images of letters.Instead of 
lassi
al ϕ(a) = w, we sometimes write a → w. A substitution 
an be naturally extended toan in�nite word u = u0u1u2 . . . by the pres
ription ϕ(u) = ϕ(u0)ϕ(u1)ϕ(u2) . . . An in�nite word u issaid to be a �xed point of the substitution ϕ if it ful�lls u = ϕ(u). It is obvious that every substitution ϕhas at least one �xed point, namely limn→∞ ϕn(a) (to be understood in the sense of produ
t topology).



TITLE WILL BE SET BY THE PUBLISHER 53. Words opulent in palindromesIn resemblan
e to the fa
tor 
omplexity C(n) of an in�nite word u, let us de�ne the palindromi

omplexity of u as the map P : N → N given by
P(n) = #{w ∈ Ln(u)| w = w̃}.If a ∈ A and w is a palindrome and awa ∈ L(u), then awa is said to be a palindromi
 extension of w.The set of all palindromi
 extensions of w is denoted by Pext(w).Similarly as in the 
ase of left spe
ial and right spe
ial bran
hes, one 
an de�ne a palindromi
 bran
hof u.De�nition 1. Let u be an in�nite word. A two-sided in�nite word v = . . . v3v2v1v1v2v3 . . . is a palin-dromi
 bran
h with 
enter ε of the word u if for every n ∈ N the word vnvn−1 . . . v2v1v1v2 . . . vn−1vn is afa
tor of u. Let a be a letter. A two-sided in�nite word v = . . . v3v2v1av1v2v3 . . . is a palindromi
 bran
hwith 
enter a of the word u if for every n ∈ N the word vnvn−1 . . . v2v1av1v2 . . . vn−1vn is a fa
tor of u.It follows from the König's theorem that if u has in�nitely many palindromes, then u has at least onepalindromi
 bran
h. In any Sturmian word on {0, 1} there exist exa
tly three palindromi
 bran
hes with
enters ε, 0 and 1. See also Se
tion 5.1.Uniformly re
urrent words 
ontaining in�nitely many distin
t palindromes satisfy that for any fa
tor w,every su�
iently large palindrome in u 
ontains w, thus su
h a palindrome 
ontains w̃ as well. Asa 
onsequen
e, we have the following theorem.Theorem 2. If u is a uniformly re
urrent word that 
ontains in�nitely many distin
t palindromes, thenits language L(u) is 
losed under reversal.The opposite impli
ation is not true as illustrated by the following example.Example 1 (uniform re
urren
e + language 
losed under reversal 6⇒ in�nitely many palindromes). Thein�nite word u on {a, b} (
onstru
ted in [13℄) whose pre�xes un are given by the following re
urrentformula

u0 = ab, un+1 = unabũn,is uniformly re
urrent and its language is 
losed under reversal. However, u 
ontains only a �nite numberof palindromes.When we relax the 
ondition of uniform re
urren
e, the statement of Theorem 2 is not true any more.Example 2 (in�nitely many palindromes 6⇒ language 
losed under reversal). The in�nite word u on
{a, b, c} whose pre�xes un are given by the following re
urrent formula

u0 = ε, un+1 = unabcn+1unis 
learly re
urrent. In�nitely many palindromes are represented by the fa
tors cn for every n. As thefa
tor ba does not o

ur, the set of fa
tors is not 
losed under reversal. A similar example 
an be foundin [16℄.The word u may be re
oded to a binary alphabet while preserving the mentioned properties. We mayfor instan
e re
ode u using the following mapping:
a → 0110, b → 1001, c → 1.An interesting relation between the palindromi
 and fa
tor 
omplexity has been revealed in [7℄.Theorem 3. Let u be an in�nite word with the language 
losed under reversal. Then

P(n + 1) + P(n) ≤ ∆C(n) + 2 for all n ∈ N. (3.1)
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t, the above relation is stated in [7℄ for uniformly re
urrent words, however the proof requiresonly re
urrent words. Theorem 3 implies that in�nite words rea
hing the equality in (3.1) are in a 
ertainsense opulent in palindromes. Another measure of opulen
e in palindromes has been provided in [23℄.Theorem 4. Every �nite word w 
ontains at most |w| + 1 palindromes (in
luding the empty word).De�nition 5. An in�nite word u satisfying that every fa
tor w of u 
ontains |w| + 1 palindromes is
alled ri
h in palindromes.The following equivalent de�nitions of ri
hness have been proved in [30℄, [16℄, [17℄, respe
tively.Theorem 6. For any in�nite word u the following 
onditions are equivalent:(1) u is ri
h,(2) any 
omplete return word of a palindromi
 fa
tor of u is a palindrome,(3) for any fa
tor w of u, every fa
tor of u that 
ontains w only as its pre�x and w̃ only as its su�xis a palindrome,(4) ea
h fa
tor of u is uniquely determined by its longest palindromi
 pre�x and its longest palindromi
su�x.We will need for our further purposes an impli
ation that holds only for languages 
losed under reversal.Corollary 7 ( [16℄). Let u be a ri
h in�nite word with the language 
losed under reversal. Then for anyfa
tor w of u, the o

urren
es of w and w̃ alternate.A natural question is whether in�nite words rea
hing the equality in (3.1) 
oin
ide with ri
h words.The following theorem proved in [16℄ provides an answer.Theorem 8. Let u be an in�nite word with the language 
losed under reversal. Then u is ri
h if andonly if P(n + 1) + P(n) = ∆C(n) + 2 for all n ∈ N.Let us mention as an open problem the following question. �Does the equivalen
e of ri
hness and theequality in (3.1) hold for a larger 
lass than words with the language 
losed under reversal? For instan
efor all re
urrent words?�The following observations may serve as hints:
• It does not hold for non-re
urrent in�nite words in general. The in�nite word abω is given in [16℄as an example of a ri
h non-re
urrent in�nite word (with the language of 
ourse not 
losed underreversal), whi
h does not rea
h the equality in (3.1) for all n ∈ N.
• Noti
e that both ri
h in�nite words and in�nite words rea
hing the equality in (3.1) 
ontainin�nitely many palindromes.
• If u is ri
h and re
urrent, then L(u) is 
losed under reversal (proved in [30℄, Proposition 2.11).The rest of this se
tion is devoted to the relation between ri
hness and bilateral orders of fa
tors. Thefollowing proposition reveals some information on bilateral orders of palindromi
 bispe
ial fa
tors in anin�nite word with the language 
losed under reversal.Proposition 9. Let u be an in�nite word whose language is 
losed under reversal. Then the bilateralorder b(w) of a palindromi
 bispe
ial fa
tor w ∈ L(u) has a di�erent parity than the number of palindromi
extensions of w.Proof. Let w be a palindromi
 BS fa
tor of u. On one hand, as the language is 
losed under reversal, wehave #Lext(w) = #Rext(w). Consequently, from the de�nition of bilateral order one 
an see that theparity of #Bext(w) is di�erent from the parity of b(w). On the other hand, the parity of the number ofpalindromi
 extensions of w equals the parity of #Bext(w) sin
e for any a, b ∈ A, if awb ∈ L(u), then

bwa ∈ L(u). �In the sequel, we will state and prove a new equivalent de�nition of ri
h words by means of bilateralorders.Theorem 10. Let u be an in�nite word with the language 
losed under reversal. Then u is ri
h if andonly if any bispe
ial fa
tor w of u satis�es:
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• if w is non-palindromi
, then

b(w) = 0,

• if w is a palindrome, then
b(w) = #Pext(w) − 1.The following lemma will provide the most important tool for the proof of Theorem 10.Lemma 11. Let u be a ri
h in�nite word whose language is 
losed under reversal. Then it holds for anybispe
ial fa
tor w:

• if w is non-palindromi
, then
b(w) ≥ 0,

• if w is a palindrome, then
b(w) ≥ #Pext(w) − 1.Proof. Let w be a non-palindromi
 BS fa
tor. By the de�nition of b(w), we want to prove

#Bext(w) ≥ #Rext(w) + #Lext(w) − 1.We will 
onstru
t a bipartite oriented graph G having its set of verti
es V de�ned as
V = {wa|a ∈ Rext(w)} ∪ {w̃a|a ∈ Rext(w̃)} .There is an oriented edge from wa to w̃b if there exists a fa
tor vb ∈ L(u) su
h that wa is its pre�x, w̃bis its su�x and fa
tors w and w̃ o

ur ea
h exa
tly on
e in vb. Furthermore, there is an oriented edgefrom w̃x to wy if there exists a fa
tor vy ∈ L(u) su
h that w̃x is its pre�x, wy is its su�x and fa
tors wand w̃ o

ur ea
h exa
tly on
e in v.

t t-

w̃a wb

. . . | w̃ | a w︸ ︷︷ ︸
v

| b | . . .

t t-

wa w̃b

. . . | w | a w̃︸ ︷︷ ︸
v

| b | . . .

Figure 2. In
iden
e relation in the graph G.Due to Theorem 6, su
h a fa
tor v is a palindrome. Therefore the existen
e of an edge from wa to w̃bimplies aw̃b ∈ L(u), and so bwa ∈ L(u), too. Analogously, if there is an edge from w̃x to wy, we have
xwy ∈ L(u).By Corollary 7, the o

urren
es of w and w̃ alternate. Thus, to any fa
tor of u 
orresponds a path in
G. As u is re
urrent, the graph G is strongly 
onne
ted.As a 
onsequen
e, the number of pairs of its verti
es whi
h are 
onne
ted by an edge is greater thanor equal to the number of its verti
es minus 1. We have

#Bext(w) ≥ #Rext(w) + #Rext(w̃) − 1.
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e Rext(w̃) = Lext(w) the proof of the �rst part is �nished.Let w be a palindromi
 BS fa
tor. Let us 
onsider this time a graph G whose set of fa
tors V is de�nedas
V = {wa|a ∈ Rext(w)} .There is an edge from wa to wb if there exists a fa
tor vb ∈ L(u) su
h that v is a 
omplete return wordto w that has wa as a pre�x. As u is ri
h, v is a palindrome. Due to the re
urren
e of u, for every

awb ∈ L(u), a 6= b, there exists an edge in G going from wa to wb. As the language is 
losed underreversal, the edge going from wb to wa is in G, too. Therefore
# {awb ∈ L(u)|a 6= b} = 2 × the number of pairs of distin
t verti
es 
onne
ted by an edge.Owing to the re
urren
e of u, the graph G is strongly 
onne
ted, thus the number of pairs of distin
tverti
es 
onne
ted by an edge is greater than or equal to the number of verti
es of G minus 1, whi
hequals #Rext(w) − 1. We �nd

#Bext(w) = # {awb ∈ L(u)|a 6= b} + #Pext(w) ≥ 2 (#Rext(w) − 1) + #Pext(w).As Rext(w) = Lext(w), the statement is proved. �Proof of Theorem 10. (⇐): Let us show by mathemati
al indu
tion that
∆C(n) + 2 = P(n + 1) + P(n) for all n ∈ N.Sin
e L(u) is 
losed under reversal, this means by Theorem 8 that u is ri
h.The assumption on bilateral orders and the fa
t that non-bispe
ial palindromi
 fa
tors have a uniquepalindromi
 extension guarantee the following equality for all n ∈ N:

∆2C(n) =
∑

w∈Ln(u)

b(w) =
∑

w∈Ln(u)
w=w̃

(#Pext(w) − 1) = P(n + 2) − P(n). (3.2)For n = 0, we 
an write ∆C(0)+2 = C(1)−C(0)+2 = #A+1. On the other hand we have P(1)+P(0) =
#A + 1.Take N ∈ N. Assume ∆C(n)+2 = P(n+1)+P(n) holds for all n < N . Using the indu
tion assumptionand (3.2), we obtain

∆C(N) + 2 = (∆C(N) − ∆C(N − 1)) + (∆C(N − 1) + 2)
= ∆2C(N − 1) + (P(N − 1) + P(N))
= (P(N + 1) − P(N − 1)) + (P(N − 1) + P(N))
= P(N + 1) + P(N).

(⇒): Take n ∈ N arbitrary. We will prove the statement of the theorem for all BS fa
tors of length n.As u is ri
h and the language L(u) is 
losed under reversal, we have by Theorem 8
∆C(k) + 2 = P(k + 1) + P(k) for all k ∈ N.Applying this equality, we will dedu
e the form of ∆2C(n).

∆2C(n) = (∆C(n + 1) + 2)−(∆C(n) + 2) = (P(n + 2) + P(n + 1))−(P(n + 1) + P(n)) = P(n+2)−P(n).Consequently, we obtain
∑

w∈Ln(u)

b(w) = ∆2C(n) = P(n + 2) − P(n) =
∑

w∈Ln(u)
w=w̃

(#Pext(w) − 1) .
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 fa
tors that are not BS have obviously exa
tly one palindromi
 extension. Thus, we 
anrewrite the previous equality
∑

w∈Ln(u)

b(w) =
∑

w∈Ln(u)
w=w̃,w BS (#Pext(w) − 1) . (3.3)Let us split the sum of bilateral orders into two parts and use Lemma 11

∑

w∈Ln(u)

b(w) =
∑

w∈Ln(u)
w 6=w̃, w BS b(w) +

∑

w∈Ln(u)
w=w̃, w BS b(w) ≥

∑

w∈Ln(u)
w 6=w̃, w BS b(w) +

∑

w∈Ln(u)
w=w̃, w BS (#Pext(w) − 1) . (3.4)This in 
ombination with (3.3) gives ∑

w∈Ln(u)
w 6=w̃, w BS b(w) = 0. By Lemma 11, bilateral orders of su
h fa
torsare non-negative, whi
h implies b(w) = 0 for all non-palindromi
 BS fa
tors. Sin
e the equality is rea
hedin (3.4), we obtain ∑

w∈Ln(u)
w=w̃, w BS b(w) =

∑

w∈Ln(u)
w=w̃, w BS (#Pext(w) − 1) . Together with Lemma 11, this resultsin b(w) = #Pext(w) − 1 for all palindromi
 BS fa
tors. �4. Equivalent definitions of Sturmian wordsLet us stress a 
lose link between periodi
ity and 
omplexity (revealed by Hedlund and Morse [38℄).On one hand, the 
omplexity of eventually periodi
 words is bounded. On the other hand, if there exists

n ∈ N su
h that C(n) ≤ n, then the 
omplexity is bounded and the in�nite word u is eventually periodi
.In 
onsequen
e, the 
omplexity of aperiodi
 words satis�es C(n) ≥ n + 1 for all n ∈ N. Sturmian wordsare de�ned as in�nite words with the 
omplexity C(n) = n+1 for all n ∈ N. This 
ondition on 
omplexityimplies many properties. Let us list some of them. If u is a Sturmian word, then u has the followingproperties:
• u is a binary word,
• u is aperiodi
,
• the language L(u) is 
losed under reversal,
• the language L(u) 
ontains in�nitely many palindromes,
• the word u is uniformly re
urrent,
• the language L(u) 
ontains no weak bispe
ial fa
tors,
• u is ri
h.There exist many equivalent de�nitions of Sturmian words. The following theorem summarizes severalof their well-known 
ombinatorial 
hara
terizations.Theorem 12. Let u be an in�nite word over the alphabet A. The properties listed below are equivalent:(i) u is Sturmian, i.e., C(n) = n + 1 for all n,(ii) u is binary and 
ontains a unique left spe
ial fa
tor of every length,(iii) u is binary, aperiodi
 and every bispe
ial fa
tor is ordinary,(iv) any fa
tor of u has exa
tly two return words,(v) u 
ontains one palindrome of every even length and two palindromes of every odd length,(vi) u is binary and every palindrome has a unique palindromi
 extension,(vii) u is aperiodi
 and balan
ed,(viii) u is aperiodi
 and AC(n) = 2 for all n ∈ N, n ≥ 1.The 
hara
terization by return words is due to Vuillon [49℄ and the one by the abelian 
omplexityis a 
onsequen
e of the works by Coven and Hedlund [20℄. The equivalent de�nition based on the
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e property 
omes already from Hedlund and Morse [39℄. The two equivalent properties 
on
erningpalindromes have been proved by Droubay and Pirillo [22℄. Noti
e that the sixth property 
an beequivalently rewritten as
P(n) + P(n + 1) = 3 for all n ∈ N,and also as
P(n + 2) = P(n) for all n ∈ N.Let us re
all that P(0) = 1 sin
e the empty word is 
onsidered to be a palindrome.5. Generalizations of Sturmian wordsWe have seen that Sturmian words 
an be de�ned in many equivalent ways. As a matter of 
ourse,various generalizations to multiliteral alphabets have been suggested and studied.5.1. Two well-known generalizationsThe most studied generalizations are Arnoux-Rauzy words and words 
oding k-interval ex
hangetransformation.Arnoux-Rauzy words (or AR words for simpli
ity) are in�nite words with the language 
losed underreversal and 
ontaining exa
tly one LS fa
tor w of every length, and su
h that every LS fa
tor has thesame number k of left extensions, i.e., #Lext(w) = k. Their alphabet A has k letters sin
e the emptyword has exa
tly k left extensions. AR words are aperiodi
 and satisfy C(n) = (k − 1)n + 1 for all

n ∈ N. They have been de�ned and studied in [23℄, the following properties have been proved ibidem.The language of AR words 
ontains in�nitely many palindromes, they are uniformly re
urrent, ri
h, andhave only ordinary BS fa
tors. AR words form a sub
lass of extensively studied episturmian words (seefor instan
e [29℄), de�ned as in�nite words that have the language 
losed under reversal and 
ontain atmost one LS fa
tor of every length.Another well-known generalization of Sturmian words is provided by words 
oding k-interval ex
hangetransformation. Let us state their de�nition and then explain why su
h words generalize Sturmian wordsto k-letter alphabets. Take positive numbers α1, . . . , αk su
h that ∑k

i=1 αi = 1. They de�ne a partitionof the interval I = [0, 1) into k subintervals
Ij =

[j−1∑

i=1

αi,

j∑

i=1

αi

)
, j ∈ {1, 2, . . . , k}.The interval ex
hange transformation is a bije
tion T : I → I given by the pres
ription

T (x) = x + cj for all x ∈ Ij , j ∈ {1, 2, . . . , k},where cj are suitably 
hosen 
onstants. Sin
e T is a bije
tion, the intervals T (I1), T (I2), . . . , T (Ik) forma partition of I. The orders of T (Ij) in the partition de�ne a permutation π : {1, 2, . . . , k} → {1, 2, . . . , k}and this permutation π determines uniquely the 
onstants cj . For instan
e, if the permutation π issymmetri
, i.e., π =
(

1 2 ... k−1 k
k k−1 ... 2 1

), then the transformation T is of the following form
T (x) = x +

∑

i>j

αi −
∑

i<j

αi for x ∈ Ij .The in�nite word u = u0u1u2 . . . over A = {a1, . . . , ak} asso
iated with T is de�ned as
un := aj if T n(x) ∈ Ij
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alled a word 
oding k-interval ex
hange transformation (k-iet word for short).From the point of view of 
ombinatori
s on words, an important role is played by those transformationswhose orbit for an arbitrary x ∈ I is dense in I, i.e., the 
losure of {T n(x)
∣∣ n ∈ N} is the whole interval I.A su�
ient 
ondition for this property represents the so-
alled i.d.o.
. (
onsult [35℄) and the irredu
ibilityof the permutation π. In the sequel, let us assume that T satis�es both of these properties. The k-ietword is then uniformly re
urrent, its language does not depend on the position of the starting point x,but only on the transformation T , its 
omplexity satis�es C(n) = (k − 1)n + 1 for all n ∈ N and no BSfa
tor is weak.The language of the k-iet word u is 
losed under reversal if and only if the permutation π is symmetri
.In su
h a 
ase, the language L(u) 
ontains in�nitely many palindromes and, as shown in [7℄, the equalityin (3.1) is attained. Hen
e, a

ording to Theorem 8, the k-iet words are ri
h. It is easy to des
ribe thein�nite palindromi
 bran
hes for su
h k-iet words. The one with the empty word as its 
enter is obtainedas the 
oding of the orbit {T n(x)|n ∈ Z} with the starting point x = 1/2 and the bran
h with the 
enter

aj ∈ A as the 
oding of the orbit with the starting point x =
∑

i<j αi + αj/2.The k-iet words provide a generalization of Sturmian words due to the well-known 
onne
tion betweenSturmian and me
hani
al words [36℄.Theorem 13. Let u be an in�nite word. Then u is Sturmian if and only if u is a 2-iet word with anirrational partition of the unit interval.Re
ently, in [45℄, a di�erent generalization of Sturmian sequen
es is 
onsidered. It in fa
t 
orrespondsto a spe
ial sub
lass of k-iet words given by 
oding a traje
tory in a regular 2n-gon.5.2. Combinatorial generalizationsLet us write down and baptize the generalizations of properties from Theorem 12. We will then referto them and study their relations. Let u be an in�nite word over the alphabet A. Denote k = #A.(1) Property C:the fa
tor 
omplexity of u satis�es C(n) = (k − 1)n + 1 for all n ∈ N.(2) Property LR:
u 
ontains one left spe
ial and one right spe
ial fa
tor of every length.(3) Property BO:all bispe
ial fa
tors of u are ordinary.(4) Property R:any fa
tor of u has exa
tly k return words.(5) Property P :the palindromi
 
omplexity of u satis�es P(n) + P(n + 1) = k + 1 for all n ∈ N.(6) Property PE:every palindrome has a unique palindromi
 extension in u.(7) Balan
e properties:(a) Property B∀:

u is aperiodi
 and for all a ∈ A and for all fa
tors w, v ∈ L(u) with |w| = |v| it holds
||w|a − |v|a| ≤ k − 1.(b) Property B∃:

u is aperiodi
 and there exists a ∈ A su
h that for all fa
tors w, v ∈ L(u) with |w| = |v| itholds
||w|a − |v|a| ≤ k − 1.(
) Property AC:

u is aperiodi
 and the abelian 
omplexity of u satis�es AC(n) = k for all n ∈ N, n ≥ 1.At �rst, let us mention whi
h properties are satis�ed by the two generalizations of Sturmian wordsfrom Se
tion 5.1. AR words ful�ll Properties: C,LR,BO,R,P ,PE and k-iet words satisfy Properties:
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C,BO,R. If moreover the permutation de�ning the k-iet word is symmetri
, then these words haveProperties P and PE . Property LR does not hold for k-iet words.It follows dire
tly from the de�nition that some Properties imply others. For instan
e, by (2.1) BOimplies C. They are not equivalent as shown by the following example taken from [26℄.Example 3 (C 6⇒ BO). The in�nite ternary word limn→∞ ϕn(a), where ϕ(a) = ab, ϕ(b) = cab, ϕ(c) =
ccab � a re
oding of the Cha
on substitution � has the 
omplexity 2n + 1 for every n ∈ N, but 
ontainsin�nitely many strong and weak BS fa
tors.In the sequel, we will show that no two of these properties are equivalent on a multiliteral alphabet.Con
erning Properties B∀,B∃ and AC, we will not treat them but in the last se
tion sin
e they arevery restri
tive, and 
onsequently, satis�ed only by a small 
lass of in�nite words.5.3. Property LRProperty LR does not 
hara
terize AR words sin
e it is satis�ed by a larger 
lass of words. In�nitewords with the language 
losed under reversal and satisfying Property LR 
oin
ide with extensively stud-ied aperiodi
 episturmian words. Nevertheless, Property LR may be satis�ed by words whose languageis not 
losed under reversal, as illustrated in [23℄ by the following example. It shows also that Property
LR does not guarantee Properties C,BO,R,P ,PE.Example 4 (LR 6⇒ language 
losed under reversal, C,BO,R,P ,PE). If we 
onstru
t an in�nite word
u so that we repla
e b with bc in the Fibona

i word abaababaabaabab . . . , the �xed point of ϕ : a →
ab, b → a, then bc is a fa
tor of L(u), however cb not. It is easy to see that su
h a word has stilla unique in�nite RS and a unique LS bran
h (the in�nite word u itself). Consequently, Property LR ispreserved. However, both of these in�nite spe
ial bran
hes have only two extensions, hen
e Property C(and BO as well) fails. The fa
tor c has only two return words caab and cab, hen
e Property R does nothold. Moreover, as u is uniformly re
urrent and its language is not 
losed under reversal, it 
ontains byTheorem 2 only a �nite number of palindromes. Therefore, Properties P and PE are not satis�ed.On the other hand, observing k-iet words, we learn that none of Properties C,BO,R,P ,PE imply LR.The problem to des
ribe the 
lass of in�nite words with Property LR whose language is not 
losed underreversal requires a further study.5.4. Property RLet us re
all that in�nite words with Property R are ne
essarily uniformly re
urrent. If their languageis not 
losed under reversal, then it 
annot 
ontain in�nitely many palindromes by Theorem 2. Su
hwords exist, as illustrated by the following example, therefore, Property R does not imply P .Example 5 (R 6⇒ P). The �xed point u of ϕ, where ϕ(a) = aab, ϕ(b) = ac, ϕ(c) = a, 
ontains bac,but cab is not its fa
tor. The fa
t that every fa
tor of u has three return words is explained in [9℄ fora whole 
lass of in�nite words 
oding β-integers.We have seen that AR words and k-iet words have both Property R and C, however, as shown in [26℄by the following example, Property C does not imply Property R on multiliteral alphabets.Example 6 (C 6⇒ R). The �xed point of ϕ : a → ab, b → cab, c → ccab � the above mentioned re
odingof the Cha
on substitution � has the 
omplexity 2n + 1 for every n ∈ N, but 
ontains more than threereturn words of 
ertain fa
tors (for example the fa
tor bc has 4 return words: bca, bcca, bcaba and bccaba.The following theorems 
ome from the paper [9℄ that is devoted to the study of Property R for in�nitewords on multiliteral alphabets. Let us observe on
e more AR words and k-iet words, these 
lasses satisfynot only Property C, but also Property BO. It is thus natural to ask whether Property BO guarantees
R. The 
orollary of the following theorem will provide an answer.Theorem 14. If u is an in�nite word with no weak BS fa
tors, then u has Property R if and only if uis uniformly re
urrent and satis�es C.



TITLE WILL BE SET BY THE PUBLISHER 13Let us underline, an in�nite word u has Property BO if and only if it has Property C and 
ontains noweak BS fa
tors. It results in the advertised 
orollary.Corollary 15. Let u be a uniformly re
urrent in�nite word. Then
BO ⇒ R.If we restri
t our 
onsideration to the ternary alphabet, the impli
ation 
an be reversed.Theorem 16. Let u be a ternary uniformly re
urrent in�nite word. Then
BO ⇔ R.As soon as the alphabet has more than three letters, Property R does not imply Property BO anymore.Example 7 (R 6⇒ BO). The uniformly re
urrent in�nite word u = limn→∞ ϕn(a), where

ϕ(a) = acbca, ϕ(b) = acbcadbdaca, ϕ(c) = dbcbdacadbd, ϕ(d) = dbcbd,satis�es R, but not C (sin
e C(n) is even for all n ∈ N) and u 
ontains, of 
ourse, weak BS fa
tors. Fordetails 
onsult [9℄.The question whether there exists a ni
e 
hara
terization of words with Property R on alphabets withmore than three letters remains open.5.5. Property P and PEThe paper [8℄ is fo
used on the study of Properties P and PE . As soon as an in�nite word u hasProperty PE , then u has exa
tly one in�nite palindromi
 bran
h with 
enter a for every letter a ∈ A andone in�nite palindromi
 bran
h with 
enter ε. Therefore, u 
ontains exa
tly #A palindromes for everyodd length (
entral fa
tors of palindromi
 bran
hes with 
enters a ∈ A) and one palindrome for everyeven length (
entral fa
tor of the in�nite palindromi
 bran
h with 
enter ε). Consequently, Property Pis also satis�ed by u.Let us re
all that Property P may be reformulated in the following way
P(n + 2) = P(n) for all n ∈ N, (5.1)where P(0) = 1. We will equally use both of the forms of Property P .Let u be an in�nite word satisfying PE . The language L(u) 
ontains in�nitely many palindromes, butit need not be 
losed under reversal, neither re
urrent nor ri
h as illustrated by the following example.Example 8 (PE 6⇒ language 
losed under reversal, PE 6⇒ ri
hness). The in�nite word u on the alphabet

{a, b, c} de�ned in the following way:
u = caccb ccc︸︷︷︸

3×

a cccc︸︷︷︸
4×

b ccccc︸ ︷︷ ︸
5×

a cccccc︸ ︷︷ ︸
6×

b ccccccc︸ ︷︷ ︸
7×

a . . .has three in�nite palindromi
 bran
hes with 
enters a, b and c

. . . cccaccc . . . , . . . cccbccc . . . , . . . ccccccc . . .and one in�nite palindromi
 bran
h with 
entral fa
tors of even length of the form . . . cccccccc . . . Thefa
tor accb o

urs only on
e in u, thus u is not re
urrent and hen
e L(u) is not 
losed under reversal.Moreover, u is not ri
h sin
e the pre�x caccbccca of length 9 
ontains only 9 palindromes:
ε, a, b, c, cc, cac, cbc, ccc and ccbcc.



14 TITLE WILL BE SET BY THE PUBLISHERHowever, if the language L(u) is 
losed under reversal, then it is possible to say more about the relationof Properties P and C and the ri
hness of u. When both P and C are satis�ed, the equality in (3.1) isrea
hed. Appli
ation of Theorem 8 provides us with the following 
orollary.Corollary 17. Let u be an in�nite word whose language is 
losed under reversal. Then
P + C ⇒ ri
hness of u.The �rst example shows that Property P itself does not guarantee ri
hness even if the language is
losed under reversal. The se
ond one illustrates that the impli
ation in Corollary 17 
annot be reversed.Example 9 (PE 6⇒ ri
hness, PE 6⇒ C). A known example of an in�nite word with the language 
losedunder reversal and with a higher fa
tor 
omplexity is the billiard sequen
e on three letters, for whi
h

C(n) = n2 + n + 1. As shown in [14℄, su
h words satisfy Property PE , hen
e P as well. Consequently,billiard sequen
es do not rea
h the upper bound in (3.1) and by Theorem 8 
annot be ri
h.Example 10 (ri
hness 6⇒ P , ri
hness 6⇒ C). Let ϕ be de�ned on an m-letter alphabet as follows:
ϕ(0) = 0t1, ϕ(1) = 0t2, . . . , ϕ(m − 2) = 0t(m − 1), ϕ(m − 1) = 0s,where s, t ∈ N and t ≥ s ≥ 2. The �xed point u of ϕ satis�es the equality P(n + 1) + P(n) = ∆C(n) + 2for all n. As the language is 
losed under reversal, by Theorem 8 u is ri
h. Property P is not satis�edsin
e the sum P(n+1)+P(n) is not 
onstant. Further properties of palindromes in u 
an be found in [4℄.Let us examine in the sequel the 
onne
tion between Properties C and P , resp. C and PE .5.5.1. Ternary alphabetLet us limit our 
onsiderations to the ternary alphabet. The following theorem and examples 
omefrom [8℄.Theorem 18. Let u be an in�nite ternary word with the language 
losed under reversal. Then(1) C ⇒ P ,(2) BO ⇒ PE .The impli
ation in Theorem 18 
annot be reversed. We have already illustrated in Example 9 thateven the stronger property PE does not ensure C. Let us provide one more 
ounterexample - a �xed pointof a substitution.Example 11 (PE 6⇒ C). Denote by u the in�nite ternary word being the �xed point of the substitution

Φ de�ned by
Φ(a) = aba, Φ(b) = cac, Φ(c) = aca. (5.2)Then the language of u is 
losed under reversal. On one hand, u has Property PE, 
onsequently, u hasProperty P , too. On the other hand, Property C fails and L(u) 
ontains in�nitely many weak BS fa
tors.Properties P and PE are equivalent for binary words. However already for ternary words, the impli-
ation P ⇒ PE does not hold any more.Example 12 (P 6⇒ PE). Let v be the ternary in�nite word de�ned by v = Ψ(u), where Ψ : {A, B}∗ →

{a, b, c}∗ is the morphism given by
Ψ(A) = bc and Ψ(B) = baa,and u is the �xed point of the substitution ϕ de�ned by

ϕ(A) = ABBABBA, ϕ(B) = ABA.Then v satis�es P , but does not satisfy PE .



TITLE WILL BE SET BY THE PUBLISHER 15The relation between R and P follows from Theorem 18 and Theorem 16.Corollary 19. Let u be an in�nite ternary word with the language 
losed under reversal. Then
R ⇒ PE .The impli
ation 
annot be reversed.Example 13 (PE 6⇒ R). Consider the �xed point u of the substitution in (5.2). As mentioned above,

u 
ontains weak BS fa
tors. Then by Theorem 16, u does not satisfy R.Putting together Theorems 18 and Corollary 17, we obtain one more 
orollary.Corollary 20. Let u be an in�nite ternary word with the language 
losed under reversal. Then
C ⇒ ri
hness of u.In 
ontrast with Corollary 17, we see that on a ternary alphabet already Property C itself ensuresri
hness.Neither in this 
ase, the reversed impli
ation holds. Consult Example 10 or the following examplewith a periodi
 word.Example 14 (ri
hness 6⇒ C). The periodi
 in�nite word (abcba)ω is ri
h (sin
e 
omplete return wordsof palindromi
 fa
tors are palindromes) and has a bounded 
omplexity.5.5.2. Multiliteral alphabetIn this se
tion, two new theorems 
on
erning Properties P and PE for multiliteral in�nite words willbe proved.Theorem 21. Let u be an in�nite word with the language 
losed under reversal.Assume C: PE ⇔ BO.Proof. (⇐): Let us prove the statement by 
ontradi
tion. Assume that Property BO holds and Property

PE does not. It is 
lear that the property PE 
an only be violated on a palindromi
 BS fa
tor. ByProperty BO, all palindromi
 fa
tors have their bilateral order equal to zero. By Proposition 9, theyhave an odd number of palindromi
 extensions, parti
ularly at least one.Sin
e the language is 
losed under reversal, Theorem 3 implies the inequality (3.1) for all n ∈ N

P(n) + P(n + 1) ≤ 2 + ∆C(n).Let w denote the shortest palindromi
 BS fa
tor that does not have exa
tly one palindromi
 extension.Denote N = |w|. Then we have for all n ≤ N ,
P(n) + P(n + 1) = #A + 1.Sin
e Property BO implies Property C, we have 2 + ∆C(n) = 2 + (#A − 1), hen
e the equality in (3.1)is attained for all n ≤ N .Sin
e w has to have at least 3 palindromi
 extensions, one 
an see that P(N +2) ≥ P(N)+2. Thus, weobtain P(N +1)+P(N +2) ≥ P(N +1)+P(N)+2 = #A+3 = ∆C(N +1)+4, whi
h is a 
ontradi
tionwith (3.1). We 
on
lude that Property PE holds.(⇒): Assume Property PE holds. Then Property P holds as well. By Corollary 17 u is ri
h. Consequently,we 
an apply Theorem 10 and we obtain b(w) = 0 for all non-palindromi
 BS fa
tors and b(w) =

#Pext(w)− 1 for all palindromi
 BS fa
tors. By Property PE every palindromi
 BS fa
tor has a uniquepalindromi
 extension, thus b(w) = 0 for palindromi
 BS fa
tors, too. �
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e several 
orollaries of Theorem 21. The most straightforward 
on
erns ri
hness andProperty BO. It follows 
ombining Theorems 21 and 8.Corollary 22. Let u be an in�nite word with the language 
losed under reversal. Then
BO ⇒ ri
hness of u.Putting together Theorems 2, 14 and 21, we obtain the following 
orollaries.Corollary 23. Let u be a uniformly re
urrent in�nite word.Assume C: PE ⇒ R.The reversed impli
ation does not hold. Property R does not even guarantee the weaker property P .Example 15 (R + C 6⇒ P). Consider again the in�nite word from the previous se
tion: the �xed point

u of ϕ, where ϕ(a) = aab, ϕ(b) = ac, ϕ(c) = a. Properties C and R are satis�ed (as explained in [9℄),
u is uniformly re
urrent and the language L(u) is not 
losed under reversal. By Theorem 2, u 
ontainsonly a �nite number of palindromes.Noti
e that the assumptions in Corollary 23 imply that the language L(u) is 
losed under reversal.It is natural to ask whether the impli
ation R ⇒ PE holds for in�nite words with the language 
losedunder reversal. The answer is however negative. Property R does not imply even the weaker property P .Example 16. (R+ language 
losed under reversal 6⇒ P) Consider again the uniformly re
urrent in�niteword from [9℄ given by u = limn→∞ ϕn(a), where

ϕ(a) = acbca, ϕ(b) = acbcadbdaca, ϕ(c) = dbcbdacadbd, ϕ(d) = dbcbd.It satis�es R, but C and BO are violated. It is not di�
ult to �nd in�nitely many palindromes amongweak BS fa
tors. Thus, the language L(u) is 
losed under reversal. However PE is not satis�ed be
ause
cbc, dbd ∈ L(u). Nor P holds sin
e P(1) + P(2) = 4 6= 5.We noti
e in the previous examples that to demand either only the language 
losed under reversal oronly Property C in order to reverse the impli
ation in Corollary 23 is not su�
ient. It is however notsolved whether any in�nite word with the language 
losed under reversal and having Properties C and Rsatis�es Property PE or at least P as well.Corollary 24. Let u be a uniformly re
urrent in�nite word.Assume PE: ri
hness of u ⇔ R.Proof. Re
all that by Theorem 2, the language is 
losed under reversal.
(⇒): Suppose u is ri
h. Then Property PE guarantees that Property P holds as well. Sin
e the languageis 
losed under reversal, Property P together with Theorem 8 implies C is also satis�ed. The statementfollows then by Corollary 23.
(⇐): Let us prove the se
ond impli
ation by 
ontradi
tion. Assume R is satis�ed and u is not ri
h. Theo-rem 6 
laims that there exists a palindrome w whi
h has a 
omplete return word that is not a palindromeitself. As PE holds, the language has #A + 1 biin�nite palindromi
 bran
hes. As w is a palindrome,we 
an �nd it in the middle of one bran
h. Sin
e u is uniformly re
urrent, we 
an �nd w in a boundeddistan
e from the 
enter (on both sides) of the remaining #A bran
hes. Thus we have #A distin
tpalindromi
 
omplete return words of w. As w was supposed to have a non-palindromi
 
omplete returnword, we have a 
ontradi
tion with R. �In Theorem 21 for in�nite words having Property C, we have proved that Property PE 
oin
ides withProperty BO. Under the same assumption on the 
omplexity, we are again able to 
hara
terize Property
P imposing this time a weaker 
ondition on bilateral orders of BS fa
tors.



TITLE WILL BE SET BY THE PUBLISHER 17Theorem 25. Let u be an in�nite word with the language 
losed under reversal and satisfying Property C.Then Property P holds if and only if any bispe
ial fa
tor w of u satis�es:
• if w is non-palindromi
, then

b(w) = 0,

• if w is a palindrome, then
b(w) = #Pext(w) − 1.Proof. (⇐): Theorem 10 implies that u is ri
h. Sin
e the language is 
losed under reversal, we 
an useTheorem 8. By Property C, we have P(n + 1) + P(n) = ∆C(n) + 2 = #A + 1, thus Property P holds.

(⇒): Corollary 17 states that u is ri
h. The statement about bilateral orders follows then by Theorem 10.
�This theorem may be immediately reformulated using Theorem 10.Corollary 26. Let u be an in�nite word with the language 
losed under reversal.Assume C: P ⇔ ri
hness of u.Non-palindromi
 bispe
ial fa
tors 
an really o

ur in in�nite words with the language 
losed underreversal and satisfying Properties C and PE , thus P as well. This means that there exist ri
h words withnon-palindromi
 BS fa
tors.Example 17. A ternary word with su
h properties is v = π(u), where u = ϕ2(u) and

ϕ : A → CAC, B → CACBD, C → BDBCA, D → BDB,

π : A → ba, B → b, C → a, D → abc.The substitution ϕ satis�es for any letter x ∈ {A, B, C, D}, if we 
ut o� the last two letters of ϕ2n(x),we get a palindrome. Together with the uniform re
urren
e of u, Theorem 2 implies that the language
L(u) is 
losed under reversal. Every LS fa
tor of u is a pre�x of ϕ2n(B) or ϕ2n(C) for some n ∈ N,
onsequently, ∆C(n) = 2 for all n ∈ N, n ≥ 1.For every non-empty palindrome w ∈ L(u) (ex
ept for B and C), its morphi
 image π(w) without �rsttwo letters is a palindrome. As v 
ontains in�nitely many distin
t palindromes and is a morphi
 imageof a uniformly re
urrent word, thus uniformly re
urrent, too, the language L(v) is 
losed under reversal.The word v has two in�nite LS bran
hes: every LS fa
tor of v is either a pre�x of π(ϕ2n(B)) or of
π(ϕ2n(C)). Therefore, v satis�es Property C. Moreover, v 
ontains only ordinary BS fa
tors. ApplyingTheorem 21, Property PE holds as well. Remark that the fa
tor ba is a non-palindromi
 BS fa
tor of v.5.6. Balan
e propertiesIt is a dire
t 
onsequen
e of the de�nition that

AC ⇒ B∀ ⇒ B∃. (5.3)The �rst impli
ation follows from the fa
t that if there are two fa
tors v, w of the same length that 
ontaina distin
t number of letters a, say l and r, then there exist fa
tors 
ontaining any number of letters abetween l and r (they may be found in any fa
tor having v as its pre�x and w as its su�x, or vi
e versa).Let us point out that our favorite generalizations of Sturmian words, namely AR words and k-iet words,violate the property B∀. The paper [19℄ provides a 
onstru
tion of an AR word u that is not c-balan
edfor any c. The same property have also all 3-iet words given by the transformation T asso
iated with thesymmetri
 permutation and verifying the property i.d.o.
., whi
h 
an be shown using methods from [1℄.It is natural to ask whether in�nite words on multiliteral alphabets with Property AC exist. A re
entanswer has been provided in [21℄: there are no in�nite words satisfying AC on alphabets 
ontaining more



18 TITLE WILL BE SET BY THE PUBLISHERthan 3 letters. On the other hand, there exist ternary in�nite words with Property AC as shown by theexample taken from [42℄.Example 18. Let v be any aperiodi
 in�nite word on {A, B} and put u = π(v), where π is the morphismde�ned by π(A) = abc, π(B) = acb. Then AC(n) = 3 for all n ∈ N, n ≥ 1.A more general theorem has been proved ibidem.Theorem 27. If an aperiodi
 uniformly re
urrent in�nite word u on a ternary alphabet is 1-balan
ed,then u has Property AC.Let us underline in the following examples that none of the impli
ations in (5.3) 
an be reversed. The�rst example 
omes from [43℄ and the se
ond one is taken from [47℄.Example 19 (B∀ 6⇒ AC). The ternary Tribona

i word � the �xed point of the substitution ϕ : a →
ab, b → ac, c → a � is 2-balan
ed, however its abelian 
omplexity rea
hes �ve values: 3, 4, 5, 6, 7. Noti
ethat the Tribona

i word belongs to AR words, whi
h satisfy Properties C,LR,BO,R,P ,PE.Example 20 (B∃ 6⇒ B∀). The �xed point u of the substitution ϕ : a → aab, b → c, c → ab has thefollowing properties (shown in [47℄):

• for any fa
tors v, w ∈ L(u) with |v| = |w|, it holds
||v|x − |w|x| ≤ 2 if x ∈ {b, c},

• there exist v, w ∈ L(u) with |v| = |w| su
h that
||v|a − |w|a| = 3.Thus, u has Property B∃. The word u is a 
oding of distan
es between neighboring β-integers, where βis the largest root of the polynomial x3 − 2x2 − x + 1. The word u is moreover known (see [28℄) to verifyProperty BO, but not LR. Theorem 14 implies that u has Property R as well. Its language is not 
losedunder reversal, 
onsequently, neither PE nor P holds.Generally, it is di�
ult to de
ide whether an in�nite word has Property B∃ or B∀. A slightly simplerproblem is to study in�nite words that are c-balan
ed for some c. The 
riterion for existen
e of su
ha 
onstant c for �xed points of a primitive substitution has been provided in [2℄, observing the spe
tra ofadja
en
e matri
es of substitutions. In general, it is however impossible to determine the minimal valueof c from the spe
trum. To our knowledge, besides the ternary words 
onsidered in Examples 19 and 20,the only non-sturmian �xed points of primitive substitutions, for whi
h the minimal value of c is known,have been examined in [10℄ and [48℄.6. Overview of relations and examplesIn this se
tion we provide a brief overview of relations and examples presented in the paper. Most ofthe relations are depi
ted in Figure 3. Examples are listed in Table 1. The word is either a �xed pointof the given substitution, the image by the morphism π of a �xed point of the substitution ϕ, the limitof the sequen
e (un) or otherwise spe
i�ed.



TITLE WILL BE SET BY THE PUBLISHER 19
BO

CuR
��

++ ++

IICuR,C

��

jj

3

dd

4u

UR

))

C CuR,3

��

U

��

[[

u

PE

+

00

qq 3,CuR
�

88

U

��

� 11UR,C

66

(( ((

R

U

��

rich11UR,PE
ll

,

yyCuR P oo CuR,C // BOp

��

CuRPP
// impli
ation
// // irreversible impli
ation

oo // equivalen
e
� // invalid impli
ationnumber #AUR uniform re
urren
eCuR language 
losed under reversal

BOp b(w) =
{
#Pext(w) − 1 if w is bispe
ial palindromi

0 otherwiseFigure 3. Diagram of known relations (assumptions are marked as labels of arrows)7. A
knowledgementsWe would like to thank Pierre Arnoux for his valuable remarks and 
areful reviewing. We a
knowledge�nan
ial support by the Cze
h S
ien
e Foundation grant 201/09/0584 and by the grants MSM6840770039and LC06002 of the Ministry of Edu
ation, Youth, and Sports of the Cze
h Republi
.



20 TITLE WILL BE SET BY THE PUBLISHERword properties referen
e
u0 = ab, un+1 = unabũn uniformly re
urrent, 
losed under reversal,�nite number of palindromes ex. 1 on p. 5,[13℄
u0 = ε, un+1 = unabcn+1un re
urrent, ∞-many palindromes, not
losed under reversal ex. 2 on p. 5,[16℄
a → ab, b → cab, c → ccab C, not BO, not R ex. 3 on p. 12,ex. 6 on p. 12,[26℄
ϕ: A → AB, B → A; π: A → a,
B → bc

LR, not 
losed under reversal, �nite num-ber of palindromes, not C, not R ex. 4 on p. 12
a → aab, b → ac, c → a R, not 
losed under reversal ex. 5 on p. 12,[9℄
a → acbca, b → acbcadbdaca, c →
dbcbdacadbd, d → dbcbd

R, 
losed under reversal, not C, not P ex. 7 on p. 13,ex. 16 on p. 16,[9℄
u = ca cc︸︷︷︸

2×

b ccc︸︷︷︸
3×

a cccc︸︷︷︸
4×

b ccccc︸ ︷︷ ︸
5×

a . . . ∞-many palindromes, not 
losed under re-versal, not ri
h ex. 8 on p. 13billiard sequen
e on three letters 
losed under reversal, PE, not C, not ri
h ex. 9 on p. 14,[14℄
a → aab, b → aac, c → aa ri
h, not C, not P ex. 10 on p. 14,[4℄
a → aba, b → cac, c → aca 
losed under reversal, PE, not C, not R ex. 11 on p. 14,ex. 13 on p. 15,[8℄
ϕ: A → ABBABBA, B → ABA; π:
A → bc, B → baa


losed under reversal, C,P , not PE ex. 12 on p. 14,[8℄
(abcba)ω ri
h, not C ex. 14 on p. 15
a → aab, b → ac, c → a C, R, not 
losed under reversal ex. 15 on p. 16,[9℄
ϕ: A → CAC, B → CACBD, C →
BDBCA, D → BDB; π: A → ba,
B → b, C → a, D → abc

PE , C, 
losed under reversal, ri
h, 
ontainsnon-palindromi
 BS fa
tors ex. 17 on p. 17
u = π(v), π: A → abc, B → acb, vis an aperiodi
 word over {A, B}

AC ex. 18 on p. 18,[42℄
a → ab, b → ac, c → a LR,BO,R,PE , B∀, not AC ex. 19 on p. 18,[43℄
a → aab, b → c, c → ab B∃, not B∀, not 
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